Product Taxonomy Matching in E-Commerce Environments

Master Thesis

presented by
Steffen Schmitz
Matriculation Number 1623016

submitted to the
Data and Web Science Group
Prof. Dr. Christian Bizer
University of Mannheim

May 2020



Contents

1 Introduction and Motivation

2 Relevant Concepts
2.1 SemanticWeb . . . ... ...
2.1.1 Inception of the SemanticWeb . . . . . .. ... .. ...
2.1.2 Realization of the SemanticWeb . . . . . . ... ... ..
2.1.3  Working with the SemanticWeb . . . . . ... ... ...
2.2 Ontologies and Taxonomies . . . . . . . . . .. .. ... .....
2.3 Ontology and Taxonomy Matching . . . . . . .. ... ... ...

3 Related Work
31 SemanticWeb . . . . ... Lo
3.2 Ontology/Taxonomy Matching . . . . . .. ... ... ......
321 Overviews . . . . ..o
3.2.2 Catalog Integration . . . . ... ... ... ........
3.3 Semantic/Product Taxonomy Matching . . . . . .. ... ... ..
3.4 Categorization of Taxonomy Matching Approaches . . . . . . ..

4 Training Data Creation

4.1 Retrieving Product Information from the Semantic Web . . . . . .

4.1.1 Web Data Commons Product Dataset and Gold Standard .

4.1.2 Crawling Product Data from the Semantic Web . . . . . .
4.2 Assigning Semantic Labels to Class-Pairs . . . . . ... ... ..
4.3 Generating Corner-Cases . . . . . . . . . ... ...,
4.4 Class Label Balancing . . . . ... ... ... ... .......
4.5 Gold Standard Creation and Dataset Statistics . . . . . . ... ..

5 Product Taxonomy Matching Methods
5.1 BaselineMethods . . . . ... ... ... ... .. . ... ...
5.1.1 Levenshtein- or Edit-Similarity . . . .. ... ... ...

O NN bW W W

10

12
13
15
16
18

21
21
21
22
23
25
26
27



CONTENTS

5.2

53

54

6.1

6.2

6.3

6.4

7.1

7.2

7.3

5.1.2 N-Gram-Similarity . . . . . .. ... ... ... .. ...
5.1.3 Path Similarity . . . ... ... ... ... ... ...,
WordNet-Based Matching Methods . . . . .. ... ... ....
521 S-Match. . ... ... ...
522 SCHEMA . . .. ... . ... ...
Supervised Taxonomy Matching Methods . . . . . . ... .. ..
5.3.1 Ontology Matching with Word Embeddings . . . . . . . .
5.3.2 Machine Learning Classification . . . . . ... ... ...
Summary . .. ... e e

Experiment Results

Baseline Methods . . . . ... ... ... ... .
6.1.1 Levenshtein- or Edit-Similarity . . ... ... ... ...
6.1.2 N-Gram-Similarity . . . . ... ... ... ... .....
6.1.3 Path Similarity . . ... ... ... ... ... ...
WordNet-Based Matching Methods . . . . . ... ... .....
621 S-Match. .. ... ... ... ...
622 SCHEMA . ... ... . . ... ... . . .. .. ...
Supervised Taxonomy Matching Methods . . . . . ... ... ..
6.3.1 Ontology Matching with Word Embeddings . . . . . . . .
632 AdaBoost . . . . ... ..
6.33 NaiveBayes . ... ... ... ... ... ... ...,
6.3.4  Stochastic Gradient Descent . . . . . .. ... ... ...
6.3.5 Multi-Layer Perceptron . . . . . . ... ... .. .....
Summary . .. ... e e e

Error Analysis and Discussion

BaselineMethods . . . . ... ... .. ... ... L.
7.1.1 Levenshtein- or Edit-Similarity . . ... ... ... ...
7.1.2  N-Gram-Similarity . . . . . .. ... ... ... ...
7.1.3  Path Similarity . . . ... ... ... ... ........
WordNet-Based Matching Methods . . . . .. ... ... ....
721 S-Match. . .. ... ...
722 SCHEMA . ... ... .. .. ... . . .
Supervised Taxonomy Matching Methods . . . . . ... ... ..
7.3.1 Ontology Matching with Word Embeddings . . . . . . . .
732 AdaBoost . . . . ...
733 NaiveBayes . ... .. ... ... ... ... ...,
7.3.4 Stochastic Gradient Descent . . . . . ... ... .. ...
7.3.5 Multi-Layer Perceptron . . . . . . ... ..........

ii

32
33
34
34
36
37
38
38
40

42
43
43
45
45
46
46
47
47
47
48
49
49
50
50



CONTENTS

T4 Summary . . ... .o e

8 Summary and Future Work

iii

67



List of Figures

2.1
2.2

3.1

4.1
4.2

5.1

schema.org/Review Example . . . . . .. ... ... ... .... 5
Amazon Product Screenshot . . . . . .. ... L., 8
Ontology Matching Classification . . . . ... ... ... .... 13
Label Distribution across PLD-Pairs. . . . . . ... ... ..... 28
Depth Distribution of Class-Labels. . . . ... ... ... .... 29
S-Match Matching Methods . . . . ... ... ... ....... 35

v



List of Tables

3.1

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

7.1

7.2
7.3

7.4
7.5

Classification of Taxonomy Matching Approaches. . . . . . . .. 20
Training Dataset Sample. . . . . . . ... ... ... ... .... 23
Grid Search Hyperparameters. . . . . . ... ... .. ... ... 40
Precision, Recall, and F1-score for Equal Label. . . . . . .. . .. 43
Precision, Recall, and F1-score for Contains Label. . . . . .. .. 44
Precision, Recall, and F1-score for Contained-In Label. . . . . . . 44
Levenshtein Confusion Matrix. . . . . . . . ... . ... ..... 45
N-Gram Confusion Matrix. . . . . . ... ... ... ....... 45
Levenshtein Path Distance Confusion Matrix. . . . .. ... ... 46
N-Gram Path Distance Confusion Matrix. . . ... ... ... .. 46
S-Match Confusion Matrix. . . . . . . . ... ... ........ 47
SCHEMA Confusion Matrix. . . . . . . . .. .. ... ...... 47
Embedding CS Confusion Matrix. . . . ... ... .. ... ... 48
AdaBoost BoW Confusion Matrix. . . . . .. ... ... ..... 48
AdaBoost Embedding Confusion Matrix. . . . . ... ... ... 48
Naive Bayes Confusion Matrix. . . . . . . .. .. ... .. .... 49
SGD BoW Confusion Matrix. . . ... .. .. .......... 49
SGD Embedding Confusion Matrix. . . . ... ... ... .... 50
MLP Confusion Matrix. . . . . . . . .. .. ... ... .. .... 50

Levenshtein: Examples for False Positive Equal Predictions on

Corner-Cases. . . . . . . v v vt it e 52
Levenshtein: Correctly Classified Disjoint Pair. . . . . . .. . .. 52
Levenshtein: Examples for False Positive Contains and Contained-

In Predictions on Corner-Cases. . . . . ... ........... 52
Levenshtein: Examples for Misclassifications among Positive Labels. 53
N-Gram: Examples for Disjoint Pairs Labelled as Contained-in. . 55



LIST OF TABLES

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18

N-Gram Experiment Confusion Matrix. . . ... ... ... ...
N-Gram Experiment Precision, Recall, and Fl-score. . . . . . . .
S-Match: Examples for True Positive Class-Label Pairs. . . . . . .
SCHEMA: Examples for True Positive Class-Label Pairs. . . . . .
SCHEMA: Examples for False Negative Class-Label Pairs. . . . .
SCHEMA Experiment Confusion Matrix. . . . . ... ... ...
SCHEMA Experiment Precision, Recall, and F1-score. . . . . ..
AdaBoost: Examples for True Positive Class-Label Pairs. . . . . .
AdaBoost: Examples for False Negative Class-Label Pairs. . . . .
Naive Bayes: Examples for False Positive Class-Label Pairs. . . .
Naive Bayes: Examples for False Negative Class-Label Pairs. . . .
SGD Experiment Precision, Recall, and Fl-score. . . . . . . . ..
SGD Experiment Confusion Matrix. . . . .. .. ... ... ...

vi

55
55
58
59
59
59
60
61
62
63
63
65
65



List of Abbreviations

BoW
CS
DOM
GPC
HTML
JSON
MLP
OAEI
PD
PLD
RDF
SGD
SMOTE
SVM
URI
WDC
XML

Bag-of-Words

Cosine Similarity

Document Object Model

GS1 Product Catalog

HyperText Markup Language

JavaScript Object Notation

Multi-Layer Perceptron

Ontology Alignment Evaluation Initiative
Path Distance

Pay-Level Domain

Resource Description Framework
Stochastic Gradient Descent

Synthetic Minority Oversampling TEchnique
Support Vector Machine

Unique Resource Identifier

Web Data Commons

eXtensible Markup Language

vii



Chapter 1

Introduction and Motivation

Taxonomy matching, a particular case of ontology matching, is a recurring topic
among researchers. Numerous novel approaches are tested in this domain and some
achieve surprising results. Yet, most of them are applied to artificial datasets that do
not represent the real world. In general, the goal of taxonomy matching is to create
an alignment between two distinct categorization systems, e.g., the taxonomy of a
library and a book shop. Although they may sell the same products, they probably
use different approaches to catalog them. The outputs of the taxonomy matching
algorithm create a semantic bridge between the labels used by both stores.

The Ontology Alignment Evaluation Initiative! (OAEI) exists since 2004 and
publishes an ever-increasing number of datasets that can be used for the evaluation
and comparison of ontology alignment algorithms. Contributions leveraging those
datasets are numerous and are presented at the International Semantic Web Confer-
ence’. The existence of the OAEI establishes a need for large, real-world ontology
matching datasets that challenge researchers and enable the development of new
ontology alignment methods.

The Web Data Commons® (WDC) project shows that an increasing number
of e-commerce websites annotate their pages semantically using schema.org and
other shared vocabularies. These make a given webpage understandable to a ma-
chine and enable comparability of information across different domains. As a re-
sult, a large corpus of product information with annotated categories/classes that
embody real-world taxonomies is available to everyone. Moreover, the Semantic
Web offers a vast corpus for the ontology matching task. Each website may use its
own dedicated taxonomy. This presents us with a possibly large, real-world dataset

"http://oaei.ontologymatching.org. Accessed: 01.05.2020
https://iswc2020.semanticweb.org. Accessed: 01.05.2020
*http://www.webdatacommons.org. Accessed: 01.05.2020
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that we can use for the evaluation of taxonomy matching algorithms.

Avesani et al. [8] as well as Angerman and Ramzan [6] identify the necessity of
large-scale taxonomy matching datasets that represent the real-world. They state
that most researchers use small or artificial datasets and that there is no agreed-
upon reference dataset. Angerman and Ramzan explicitly express the need for
freely available, large-scale datasets.

Hence, it is the goal of this Thesis to investigate if the semantic annotations
can be leveraged to create an evaluation dataset for ontology matching tasks that
stems from publicly available data. In this Thesis, we will create a gold standard
of labelled class pairs that are part of multiple, distinct, real-world taxonomies
and evaluate numerous taxonomy matching algorithms on this gold standard. The
alignment tasks that the OAEI focuses on are mainly concerned with closest match
problems. Instead, we build on the ideas of Giunchiglia et al. [14] and provide
semantic labels. They predict not only equality of classes, but also if one class is
more general than the other. This could enable improvements in product search on
pages that feature results from multiple distinct pages, e.g., price-comparison sites,
by enabling customers to broaden or focus their search more efficiently. It could
also help in the task of catalog integration, as discussed in Meusel et al. [22] and
Sabou et al. [34]. Instead of putting all products under the closest class in a target
taxonomy, the need for an additional layer may become apparent and, therefore,
improve the overall result. We also review and categorize relevant literature with a
special focus on e-commerce taxonomy matching. Our main contributions are:

* an overview of relevant taxonomy matching literature,

* the creation of a realistic gold standard for semantic taxonomy matching in
the e-commerce domain, and

* an evaluation of product taxonomy matching algorithms on a real-world
dataset.

The rest of this Thesis is structured as follows. Chapter 2 introduces the funda-
mentals of this Thesis. Hence, the Semantic Web and taxonomy matching are de-
fined. It also definitions that we will use throughout this Thesis. We review relevant
contributions from current research in Chapter 3. There, we present contributions
in the field of the Semantic Web and different taxonomy matching approaches.
In the fourth Chapter, the creation of our gold standard is outlined. We describe
the methods that are evaluated on the gold standard in Chapter 5 and evaluate the
results in Chapter 6. Chapter 7 includes an analysis of the errors that individual
methods make in the prediction. Finally, Chapter 8 summarizes our results and
gives an outlook into possible future work.



Chapter 2

Relevant Concepts

This Section summarizes the relevant concepts which build the foundation of this
Thesis. These include the Semantic Web with annotated and, therefore, machine-
readable pages. We use the data given in those annotations to create a training
data set and a foundation for the product taxonomy matching gold standard. In the
second part of this Chapter, we explain ontologies and taxonomies and how they
can be matched.

2.1 Semantic Web

2.1.1 Inception of the Semantic Web

At the beginning of this century, webpages were optimized for human readers.
They contained a lot of text and some images. This unstructured information makes
it hard for machines to understand the results and to act on them. Berners-Lee et
al. [9] propose the Semantic Web, an extension to the current web, that is using
annotations that make human-readable information accessible to machines. They
propose to use the eXtensible Markup Language (XML) and the Resource Descrip-
tion Framework (RDF) to allow content-creators to make any part of their page
machine-readable or to link it to any other content on the internet. This approach is
very expressive and flexible, but has the limitation that the content consumer must
know what the annotations are about and what they mean.

Berners-Lee et al. propose the RDF syntax based on Unique Resource Identifier
(URI) that can be used as primary keys and combined with predicates. Assuming
there is a database of persons (pe:) and a database of papers (pa:) in which a person
can be an author of a paper (authorOf), we can state that ”pe:Berners-Lee authorOf
pa:The-Semantic-Web”.
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Usually, URIs point to web pages, e.g., https://en.wikipedia.org/
wiki/Tim\_Berners—-Lee.

2.1.2 Realization of the Semantic Web

This Subsection covers how the Semantic Web is implemented today. We focus
on formats to annotate pages and shared vocabularies to compare the contents of
different websites.

There are two options to add machine-readable content to a webpage. The
content creator could either annotate the HyperText Markup Language (HTML)
elements directly and keep the annotations close to the human-readable content
or add a central property that includes all structured information about the current
page. The following example from target . com illustrates the usage of a central
object that describes the current webpage. The script-tag is placed somewhere
inside of the HTML-body and contains all properties that are available for the given
product, like the name, brand, and image. The type “application/ld+json” indicates
that this is a JavaScript Object Notation (JSON) document containing linked data.

<script class type="application/ld+7json">

{

"@context": "http://schema.org",
"@type": "Product",

"name": "Samsung 50\" Smart 4K UHD",
"brand": "Samsung",

"image": "<image-url>",

"sku": "53832607"

}
</script>

In the second example, we translated the above ld+json! into microdata annota-
tions. The HTML snippet could then look like this:

<div itemtype="http://schema.org/Review">
<span itemprop="name">Samsung 50\" Smart 4K UHD</span>
<meta itemprop="brand" content="Samsung" />
<img itemprop="image" src="<image-url>" />
<meta itemprop="sku" content="53832607" />
</div>

"https://json-1d.org. Accessed: 01.05.2020
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This would show the product name and the product image, while the other two
tags would be hidden from the user. Nevertheless, the annotation is still closer
to human-readable content and, since this content is reused during the annotation,
there can not exist any discrepancies between the machine-readable content and
the human-readable content.

One can imagine that both implementations provide a great deal of flexibility
and can lead to data silos if there is no agreement between different pages to use a
shared vocabulary.

That is where vocabularies like schema.org or the opengraphprotocol.org come
into play. They provide a shared vocabulary that can be used across webpages to
indicate the same meaning. The examples above already visualized that there are
multiple ways to annotate the HTML file. In the following example, we will com-
pare the machine-readable side with the human-readable one. Figure 2.1 shows an

v <div class="review-content -hardware” id="184132" itemprop="review" itemscope itemtype="http://
schema. org/Review'>

<meta itemprop="itemReviewed" content="Apple MacBook Pro 13" Core i7 2.8GHz 16GB 512GB - Touch
Bar - Space Gray">
P <div class="col_left review-byline">w</div>
v <div class=' _right">
v <div clas:
w <div class="star-rating-container hhhh" data-rating="5" itemprop="reviewRating" itemscope
* ok kok ok itemtype="ht 3 . star rating"
cli

e
<div class="stars-empty"></div>
Awesome laptop <meta itemprop="ratingValue" content="5">
<meta itemprop="bestRating" content="5">
It's for work, solid product. Thoughit gets hot very fast, the pros outweighit </div>
</div>
v <div class="containBulk"s
<div class="review-title" itemprop="name">Awesome laptop</div>
<div class="collapse">
v <span class="fullText" itemprop="description">
" It's for work, solid product. Though it gets hot very fast, the pros outweigh it. "
</span=
</div>

Figure 2.1: schema.org Review example. On the left hand side is the human-
readable webpage and on the right hand side is the annotated HTML code.

annotated HTML snippet with schema.org annotations and the corresponding web-
page. The surrounding div-tag declares via the itemtype property that it contains
a schema.org/Review. The definition of a review contains properties like ’itemRe-
viewed’ and 'reviewRating’. In some of the enclosed elements we see the itemprop
field, which also maps to the properties specified in the schema.org/Review.

Now, a computer can parse the same code that is presented to a human and
can infer that the itemReviewed got a reviewRating of 5 stars. Search engines like
Google and DuckDuckGo either use those annotations to enhance the expressive-
ness of their results or to immediately respond to questions instead of forwarding
the customer to another webpage [36].

*Review source: https://www.cdw.com/product/
apple—-macbook-pro—13-core-17-2.8ghz-16gb-512gb-touch-bar-space-gray/
5578874. Accessed: 01.05.2020
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2.1.3 Working with the Semantic Web

The Semantic Web offers an immense potential for data analysis and knowledge
generation. However, due to the distributed setup of the internet, there exists no
single source to access all data. The Billion Triple Challenge [16] is an attempt at a
unified access point, but still contains only a subset of all available data on the web.
While Herrera et al. [16] provide only raw triples, the WDC project [21], too, pro-
vides triples, but also schema.org class-specific subsets*. This enables researchers
to focus on specific data, like Hotels or Product Reviews, without the overhead
of managing all other data. The WDC project is based on Common Crawl’ data,
a pre-crawled collection of HTML pages. The advantage of the Common Crawl
dataset is that a researcher does not have to access millions of web pages himself,
but can download the HTML context of those pages from a single source.

In the case that none of the above datasets is sufficient, it is also possible to
gather the data directly from the web. Using frameworks like scrapy® and LD-
Spider [15], one can retrieve data from a specific set of webpages or get a broad
overview of the web. LDSpider is also used internally for the Billion Triple Chal-
lenge.

In this Section, we have seen how semantic annotations make web pages machine-
readable and how shared vocabularies make them also machine-understandable.
The Semantic Web provides infinite opportunities for data-based projects.

2.2 Ontologies and Taxonomies

In this Section, we will introduce the concepts of ontologies and, their special case,
taxonomies.

In general, ontologies “can be viewed as a set of assertions that are meant to
model a particular domain. Usually, they define a vocabulary used by a particular
application” [13, p. 25]. A more intuitive way to describe them would be that
an ontology is a format or description that can be used to describe a collection,
e.g., database schemata. Ontologies can range from very informal and expressive,
like directories, to a very strict and formal language, like XML schemas or entity-
relation schemas for databases.

According to Euzenat and Shvaiko [13, p. 34], ontologies usually consist of
the following entities:

*nttp://www.webdatacommons.org/structureddata/2019-12/stats/
schema_org_subsets.html. Accessed: 01.05.2020

Shttp://commoncrawl.org. Accessed: 01.05.2020

®https://scrapy.org. Accessed: 01.05.2020
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* ”Classes or concepts are the main entities of an ontology. These are inter-
preted as a set of individuals in the domain. [...]

* Individuals or objects or instances are interpreted as a particular individual
of a domain. [...]

* Relations are the ideal notion of a relation independently to what it applies.
Relations are interpreted as a subset of the product of the domain. [...]

* Data types are particular parts of the domain that specify values. Contrary
to individuals, values do not have identities. [...]

* Data values are simple values. [...]”

In this Thesis, we will focus on very informal ontologies, namely taxonomies
or directories: ”A taxonomy is a partially ordered set of taxons (classes) in which
one taxon is greater than another only if what the former denotes includes what is
denoted by the latter. Directories or classifications are taxonomies that are used
by companies for presenting goods on sale, by libraries for storing books, or by
individuals to classify files on a personal computer” [13, p. 27].

Let us look at two examples that are illustrative for the cases above. The first
one is a directory structure on a computer. Below, we show the layout of our Uni-
versity directory. The root folder, UniMA, contains all directories listed beneath,
e.g., Master Thesis and Organizational. Those, in turn, contain other directories,
which may contain more files.

> tree -L 2
UniMA
| - Master\ Thesis
| |- Application
| | = Code
| |- Data
| |- Literature
| | - Thesis
|- Organizational
|- FSS18
|- FSS19
| - HWS17-18
|- HWS18-19
| - HWS19-20
| - Module\ Catalog\ 17.pdf
| - Module\ Catalog\ 18.pdf
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Inside each directory, there is a clear hierarchy, i.e., it is partially ordered, but we
can not infer any relationships across folders. For example, we can not say how
FSS18 relates to Literature.

Another typical example are online shop taxonomies. Figure 2.2 shows a prod-

Electronics & Photo » Home Cinema, TV & Video > TVs

Samsung RU7179 LED TV (Ultra HD, HDR, triple tuner, smart
TV). black [Energy Class A]

by Samsung
Yrirvryryy ¥ 2,151 ratings | 923 answered questions

Was: €359:66
Price: €333.00 vprime
You Save: €26.00 (7%)
Prices for items sold by Amazon include VAT. Depending on your delivery address,
VAT may vary at Checkout. For other items, please see details.

“ Product fiche

Mit der Amazon.de Prime VISA Karte bis zu 3% zuriick bekommen. Jetzt beantragen & 40 €
Startgutschrift sichern. Mehr.
Free Amazon product support included v

Roll over image to zoom in New & Used (37) from €309.69 vPrime FREE Delivery

Figure 2.2: Amazon Product Screenshot’

uct on amazon.com. In the upper left corner, we see the category of the product, in
this case, “Electronics & Photo > Home, Cinema, TV & Video > TVs”. Imagine
a separate taxonomy in the domain of ”Clothing”. While we can say that ’Elec-
tronics & Photo” is more general than TVs, the relation between TVs and T-Shirts
(’Clothing > Men > Tops, T-Shirts & Shirts > T-Shirts”) is still undefined.

Usually, those taxonomies highly depend on the domain in which they are used.
While shops with a big inventory, like amazon.com, may use a very high-level tax-
onomy for their products, a small, specialized shop may use a completely different
set.

For the remainder of this Thesis, we will use the term class or class-label if
we refer to the complete string, e.g., ”Clothing > Men > T-Shirts”, category if we
mean a specific part of the class-label, e.g., ”’Clothing”, and taxonomy if we mean
the tree that is spanned by the class-labels.

Returning to the five entities mentioned above, a category or class would be a
class in the ontology, while the products would map to the individuals. A special
case in a taxonomy is that there exists only one relation type, the is-a relation. We
can only denote that something is a subclass of something else. Data types and data
values are of minor value in a taxonomy, since we are usually restricted to strings,
i.e., text-only individuals.

"Source: https://www.amazon.de/dp/B07PGBHP37/. Accessed: 01.05.2020
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Now that we have established the meaning of ontologies and, in particular,
taxonomies, we can continue with the topic of ontology and taxonomy matching.

2.3 Ontology and Taxonomy Matching

This Section introduces ontology matching with a special focus on taxonomy match-
ing. Since taxonomies are a simpler subset of ontologies, we can not always
use general ontology matching methods, because general ontology matching algo-
rithms might rely on additional properties. Whatsoever, there exist also some spe-
cialized taxonomy matching methods that use the simpler structure of taxonomies.

Euzenat and Shvaiko define the goals of ontology matching as “finding corre-
spondences between semantically related entities for different ontologies. These
correspondences may stand for equivalence as well as other relations, such as con-
sequence, subsumption, or disjointness, between ontology entities.” [13, p. viii] In
our case, we focus on finding correspondences between product categories. The
result of the ontology matching process is called an alignment.

The following example should serve as a motivation for taxonomy matching.
Agrawal and Srikant [4] describe a scenario in which a big online shop (A) acquires
another online shop (B) and wants to list the combined set of products on their
site. Usually, the product hierarchies for A and B may overlap at a high level in
their taxonomies, but there will be some differences on the lower level. It may
even be possible that 90 percent of the products in B fall into one category of A.
One could label all products in B manually to integrate them, but this is usually
an expensive and time-consuming process. Another possibility would be to use a
classifier trained on A to classify the products in B, taking the description, product
name, and similar attributes into account. Both of those approaches discard the
taxonomy of B, though. Agrawal and Srikant [4] show that they can improve the
classification considerably if the two taxonomies correlate and the taxonomy of B
is taken into account.

The problem stated above is called catalog integration and is viewed as a very
common problem in the Semantic Web [4], [22], [38]. Often, a central catalog
like the GS1 Product Catalog (GPC)® is used as the target, but we can also use the
example of two distinct shops as demonstrated above.

Other problems that can be solved with ontology matching involve schema
integrations for databases or for XML-templates. This Thesis will focus on ap-
proaches that infer relations between classes in two taxonomies.

dhttps://www.gsl.org/standards/gpc. Accessed: 01.05.2020



Chapter 3

Related Work

Multiple attempts have been undertaken to use the Semantic Web as it was envi-
sioned by Berners-Lee et al. [9] as a research dataset. Thereby, the data that was
previously hidden in the unstructured HTML files is used as an additional feature
generation method for ontology matching and catalog integration [22, 34]. Today,
the field of ontology matching is an active research area with contributions utiliz-
ing external corpora [14, 28, 2] like WordNet [24], embeddings [37, 31], and other
machine learning approaches [12]. Some methods focus explicitly on the task of
product taxonomy matching [36, 28, 2].

The first Section in this Chapter introduces contributions that use the Semantic
Web as the underlying dataset for their research. They use Semantic Web data
for ontology matching or with a focus on products from e-commerce platforms.
We introduce taxonomy matching algorithms in the second Section and focus on
product taxonomy matching in the third Section. We conclude this Chapter with a
categorization of the presented approaches.

3.1 Semantic Web

Sabou et al. [34] propose the use of information encoded in the Semantic Web as
background knowledge for ontology matching tasks. They name numerous ontol-
ogy matching approaches that rely on an external ontology as background knowl-
edge, e.g., the work of Aleksovski et al. [5]. In their article Sabou et al. validate
the hypothesis that a set of ontologies extracted from the Semantic Web covers a
larger universe and contains more knowledge than any single ontology which is
currently available or can be manually crafted for a single experiment. Instead of
using a single ontology as background knowledge, they use multiple, automati-
cally selected ontologies. Their goal is to use the background ontology with the

10
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best coverage of the given domain. Sabou et al. found that using the Semantic Web
leads to results comparable to existing methods, although the semantic relations on
the web are often erroneous, especially with regard to subsumption relationships.
Overall, they conclude that ontologies extracted from the Semantic Web can serve
as background knowledge in order to improve existing mapping methods.

In 2014 Meusel et al. [21] laid the foundation for many experiments using data
from the Semantic Web by publishing the WDC Microdata, RDFa and Microformat
Dataset Series. Based on the extracts published by the Common Crawl project,
they produced a set of over 30 billion RDF quads. The layout of an RDF quad with
additional examples is explained in Section 4.1. In addition to the raw extraction
results, class-specific subsets are published annually'. The latest results based on
the 2019 Common Crawl contains more than 900 million quads from more than
218,000 hosts for product-related classes. Multiple authors reuse those results for
their own research, e.g., [22, 30, 38].

In a follow-up paper, Meusel et al. [22] reused those results to improve product
categorization in e-commerce catalog integration tasks. First, they extracted statis-
tics about properties that occur in the Product/Offer annotations and found that
about 86 percent of the Pay-Level Domains (PLD) contain a name, 66 percent an
image and/or a description, but only 2 percent of the PLDs annotate their products
with a category or breadcrumb. The categories and breadcrumbs form the taxon-
omy of an individual PLD and contain the class of the given product. Those classes
are relevant for the remainder of their paper and also, later, for our work. The goal
of Meusel et al. is to use the annotated properties, especially the class-property, to
classify products into the GPC’s taxonomy. From the annotation data a gold stan-
dard was created and used to evaluate product classification methods. During the
process, Meusel et al. encoded their product information as vectors with a Bag-of-
Words (BoW) and a tf-idf approach and applied multiple classifiers, namely Naive
Bayes, Decision Trees, and k-Nearest-Neighbors. They show that it is possible to
predict the product class with an 80 percent accuracy in a supervised approach.

Zhang and Paramita [38] build on the dataset and ideas of Meusel et al. [22], but
use new classification methods based on deep-learning models and achieve a sig-
nificant improvement with regard to the F1-score. Instead of encoding the product
data as vectors with BoW or tf-idf, they use a GloVe word-embedding model [29]
that was pre-trained on the Common Crawl corpus. In their work, they also con-
sidered a word2vec word-embedding model [23] pre-trained on a Google News?>
corpus, but expected a higher coverage with the Common Crawl model since the

'http://webdatacommons.org/structureddata/2019-12/stats/schema_
org_subsets.html. Accessed: 01.05.2020
https://code.google.com/archive/p/word2vec/. Accessed: 01.05.2020
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data is also extracted from the same corpus. Zhang and Paramita state that in most
classification papers, the name property is combined with additional metadata as an
input for the classifier. Contrary to this approach, they also use the description and
the class-label as individual inputs and try combinations of those three features.
Here, the class-labels are encoded as a weighted sum of the word-embeddings that
make up the class-label. In addition, Zhang and Paramita experimented with dif-
ferent cleaning and normalization steps on the class-label and discovered that they
were counterproductive for the product classification task since relevant contextual
information was discarded. Overall, they demonstrate that word-embeddings on
the class-labels of products are a useful input for classification tasks.

Another use of product data from the Semantic Web is given by Primpeli et
al. [32, 30]. They use the class-specific product dataset published by the WDC
project to create a large training set and gold standard for product matching on
realistic, web-scale data. Afterwards, they apply existing approaches for entity
resolution on this dataset and try to replicate the results from other contributions
that were tested on smaller datasets. In order to create the training dataset Primpeli
et al. pick schema.org properties that point to product identifiers, clean them, and
perform a similarity search on the identifiers to find products that have the same
underlying identity. They manually validate a subset of 2,200 products of those
matches and, in the end, provide three datasets: the complete training dataset, a
subset from English domains, and a manually verified gold standard. The complete
training dataset consists of 26 million offers and the English subset of 16 million
offers. Their baseline experiments on the newly created datasets achieve an F1-
score of 0.9 for entity resolution and, therefore, prove the utility of this training
data from more than 79,000 e-commerce platforms.

3.2 Ontology/Taxonomy Matching

We will focus on general ontology matching with a special focus on taxonomy
matching in this Section. In the first part textbooks and surveys are introduced,
which may serve as a reference for a more profound, general introduction into the
topic of ontology matching. Next, catalog integration papers are introduced. Their
relevance for this Thesis stems from the fact that properties of ontologies are used
for a classification task. Towards the end of this Section, we will take a closer look
at taxonomy matching approaches.
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3.2.1 Overviews

The Ontology Matching textbook by Euzenat and Shvaiko [13] introduces ontology
matching and includes a multitude of applications and models. If one is interested
in the topic of ontology matching beyond the task of taxonomy matching, this
should serve as a good starting point.

Euzenat and Shvaiko also provide a classification of ontology matching ap-
proaches shown in Figure 3.1. They define two high-level approaches to separate

Matching techniques Granularity/Input interpretation
Element-level Structure-level
Semantic Syntactic Syntactic Semantic

oncrete techniques

Formal - Language-|
String- suag
resource- based Graph-
Informal based -
based tokenisation, | |Constraint- based
resource- name Taxonomy Instance- |[ nodel-
upper-level — lemmatisa- based graph homo-
K based similarity, i based X based based
ontologies, . . tion, type morphism, .
B ! Directories, description ol similarity, ks taxonomy h Data analysis || SAT solvers,
omain- . morphology, milarity, key ath, - o1
. annotated similarity, . p .gy . structure p and statistics | [ DL reasoners
specific elimination, properties children,
. resources, global .
ontologies, lexicons, leaves
namespace .
linked data thesauri

Semantic Syntactic  Terminological Structural Extensional Semantic
NS
Context-based Content-based
Matching techniques Origin/Kind of input

Figure 3.1: Ontology Matching Classification [13]

the specific techniques. At the top, we see the classification based on granular-
ity and at the bottom the classification based on origin. Note that the techniques
placed in the middle are shared among them. The classification based on granu-
larity distinguishes between element-level matchers and structure-level matchers.
The former compares only two entities at a time together with their properties,
while the latter takes the whole ontology into account to predict the most proba-
ble alignment. The origin-based classification distinguishes based on the source
of information that is used in the classifier. Content-based methods focus only on
the content of the given ontologies, while context-based matchers allow external
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knowledge resources, e.g., external ontologies from the Semantic Web as in [34].

Angerman and Ramzan published a textbook focusing exclusively on taxon-
omy matching approaches [6]. First, they introduce the problem of taxonomy
matching by contrasting it to general ontology matching and motivate the work
by introducing use cases for taxonomy matching in the real world. They also
reuse ideas from Euzenat and Shvaiko [13], especially the categorization based
on Granularity and the different sources of heterogeneity in taxonomies, namely
terminological, conceptual, syntactical, and semiotic. They define those concepts
as follows [6, p.18]:

» "Terminological Heterogeneity appears when the concepts of two taxonomies
are expressed using different languages [, e.g., English and German].

» Conceptual Heterogeneity arises if two taxonomies use different relation-
ships to describe an identical domain. [...].

* Syntactical Heterogeneity occurs when for the storage of the taxonomies dif-
ferent data languages/models are used. [...].

» Semiotic Heterogeneity emerges when persons misinterpret concepts, re-
spectively the relationships inside the taxonomies along with the used labels
for concepts. [...].”

In the second part of their book, they survey state-of-the-art taxonomy matching al-
gorithms from recent OAEI campaigns (2011-2015). They break each contribution
down into its individual components and show how each component tackles one of
the four sources of heterogeneity defined above. For terminological heterogeneity,
translators are used, while conceptual heterogeneity may be covered by external
knowledge bases like WordNet or Wikipedia. For our work, especially models
that cover conceptual heterogeneity are relevant since we only use English product
classes, represent them in a common file format, and no human are involved in the
matching.

In addition to a survey of taxonomy matching algorithms, Angerman and Ramzan
also describe the individual tracks of the OAEI. The different tracks are discussed,
namely the Ontology Track, the Multifarm Track, the Directories and Thesauri
Track as well as the Interactive Matching Track. The Multifarm Track focuses on
multi-language matching and the Interactive Matching Track on evaluating the fac-
tor of human inputs during the matching. The Ontology Track can be characterized
as the most general task with 16 taxonomies while the Directories and Thesauri
Track covers a matching task for libraries. Overall, the book provides a broad in-
troduction into taxonomy matching and serves as a comprehensive overview of the
field.
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Avesani et al. [8] notice that current taxonomy matching papers do not use a
common foundation to make their contributions comparable. They create a dataset
which aims at representing real-world problems and evaluate existing taxonomy
matching methods. In conclusion, they state that most evaluations do not hold up
in the real-world using representative data.

3.2.2 Catalog Integration

The task of catalog integration is closely related to our task of taxonomy matching.
For a given class-label, the aim is to identify the the closest class in a target taxon-
omy. Most methods rely on some similarity measure to find matching candidates
that can be used to make predictions which are required for taxonomy matching.

One of the earliest contributions in this area, presented by Agrawal and Srikant [4],
was published around the same time as the first proposal of the Semantic Web by
Berners-Lee et al. [9]. The problem of integrating catalogs is, therefore, at least
as old, if not older, as the problem of making the web accessible for computers.
Agrawal and Srikant propose a use case around a corporate merger where the parts
manufactured by the acquired company have to be integrated into the current cat-
alog. They operate under the assumption that the vocabularies in both catalogs
are similar and that they use a similar model to categorize the entities. Future algo-
rithms use external ontologies or other corpora to enable alignments in cases where
this assumption does not hold, but those were not available at that time. In their
experiments, Agrawal and Srikant use a Naive Bayes classifier to predict the target
class given a product-label as a baseline and compare it with a Naive Bayes classi-
fier that takes product- and class-labels into account. They report that the accuracy
increased significantly for most datasets and the performance of the enhanced clas-
sifier has never been worse than the baseline. This early contribution shows that
the given class on a product is an important feature for the prediction of the most
similar class in another taxonomy.

Papadimitriou et al. [27] use the same motivating example as Agrawal and
Srikant [4], but focus on the structure of the complete source taxonomy to enhance
their matcher. They use a text-based classifier for their matching and add the con-
straint that classes that are close in the source taxonomy should also be close in the
target taxonomy. This, again, operates under the assumption that the taxonomies
use at least a similar model to categorize instances. Yet, the requirement of a
similar vocabulary is somehow lifted, since classes that should be close, but use
varying terms for the same concept, are moved closer together. Essentially, they do
not simply add class-labels as flat strings as additional inputs, but rather walk up
the taxonomic structure in case no obvious match can be identified. Matching on
a higher taxonomic level also has the advantage that the search space of possible
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matches is pruned. This effect allows the algorithm to scale to very large input tax-
onomies. The first step of Papadimitriou et al.’s algorithm is a text-based classifier
like Naive Bayes that takes the class-labels as inputs. Their new contribution is
the addition of a second step that consists of an optimization problem that trades
off the previous text-based predictions with a cost for separating classes that are
close in the source taxonomy. This shows that not only the terms in the source
class are relevant for the matching, but also the hierarchical structure of the source
taxonomy as a whole.

Meusel et al. [22] also focus on catalog integration. Instead of using a cor-
porate merger case, they use e-commerce platforms and the Semantic Web as a
motivating example. Their contribution with regard to the Semantic Web was al-
ready discussed in Section 3.1. Similar to Agrawal and Srikant [4] they utilize
standard classification algorithms like Naive Bayes and k-Nearest-Neighbor clas-
sifiers as their baseline and encode the properties of each product with BoW and
tf-idf methods. Meusel et al. propose two new approaches that they benchmark
against their baseline. First, they encode the target taxonomy and each input prod-
uct as a vector and compute all distances between source- and target-classes using
Cosine-similarity and the Jaccard coefficient. The closest match with a non-zero
similarity is then taken as the prediction. In a second approach, they follow Pa-
padimitriou et al. [27] in formulating a global optimization problem to compute
the optimal matching. In addition to closeness in the vector space between the
source- and the target-class, they require that products that are close should be in
the same class. The major difference between Meusel et al.’s approach and Pa-
padimitriou et al.’s approach is that the closeness between products is computed
based on their vector encoding instead of the class-labels. All in all, Meusel et
al. show that supervised methods outperform distantly supervised approaches, but
both approaches are promising in classifying products into categories. They raise
concerns about the scalability of the global optimization approach, though.

3.3 Semantic/Product Taxonomy Matching

Giunchiglia et al. [14] present S-Match, an approach for semantic schema match-
ing. They use WordNet to derive the intended meaning of a class-label and com-
bine this with multiple other matchers to assign a semantic label for the relation
between two classes. This is the biggest differentiator to other contributions in
the field. Furthermore, instead of solely inferring equality or finding the closest
match between two taxonomies, they also predict if one class is more general than
the other. A more detailed description of their algorithm is given in Section 5.2.1.
At this point, we will just lay out the main ideas of their paper. In a first step,
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S-Match computes the senses of each class-label using WordNet. Then, it pairs all
labels in both taxonomies and computes the relation between them, which results
in a propositional validity problem. They test each possible relation, i.e., equal,
contains, contained-in, disjoint, together with their propositional statement and try
to solve it. If the problem is solved, the tested relation is accepted, and in case it
resolves to a conflict, it is rejected. In the latter case, they use eleven additional
matching tools to make a prediction. Five of them are string-based and the other
six use the WordNet glossaries to predict subsumption relationships. To the best
of our knowledge, the solution by Giunchiglia et al. is the only one that is also
focused on the prediction of a semantic label for all class-label pairs between two
taxonomies.

Park and Kim [28] were the first to approach the taxonomy matching problem
in the domain of e-commerce with WordNet. Their results are commonly used
as a baseline for other contributions that focus on e-commerce. They focus on
product search, namely returning a set of similar products in a target taxonomy
given a product in a source taxonomy. This problem is then narrowed down to
finding close classes in a taxonomy given a class-label from another taxonomy.
Standard ontology methods have a high focus on precision or accuracy to avoid
the introduction of mismatches. According to Park and Kim, in product search,
the focus should be on a higher recall since it is preferable to present a somewhat
related product to a client instead of returning no products at all. It may also come
at a high cost for the retailer if a suitable product is not returned in a search, because
the set of possible matches was narrowed down too quickly. Hence, their goal is
to increase the recall while making minimal trade-offs with regard to precision.
Similar to Giunchiglia et al. [14] they employ WordNet to figure out synonyms
given the class-label. To avoid the inclusion of homonyms, i.e., words with the
same spelling, but different meaning, they filter the synonyms by their senses, given
the context of the current product. The context is given by the higher layers in the
source taxonomy of the given class-label. Park and Kim empirically prove that their
algorithms improves on recall for multiple datasets in comparison to the PROMPT
algorithm by Noy and Musen [26].

Nederstigt et al. [25] propose SCHEMA as an extension of the ideas from Park
and Kim [28] and describe their results in a series of papers [25, 2, 3]. The latest
contribution [25] is the most exhaustive presentation with regard to the algorithm
description and evaluation. The authors identify some shortcomings in the method
of Park and Kim and provide improvements to achieve better overall results. The
first advancement is with regard to composite categories. These frequently occur
in product taxonomies and have a form like "TVs, Notebooks & Monitors”. The
method established by Park and Kim would use the complete label and, since there
is no match in WordNet, would be unable to disambiguate the sense of the label
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above. Nederstigt et al. propose the usage of a split term set, which treats all
of those words individually and, therefore, increases the likelihood of a match in
WordNet. Another shortcoming is the lack of context for short paths in the method
by Park and Kim. This makes it hard to identify the true sense. SCHEMA does
not only take the parent, but also child- and sibling-label into account to determine
the context. In their experiments, Nederstigt et al. show that the recall improves
compared to the method by Park and Kim, but the accuracy is lower. Since the
authors of both papers consider the recall more important in the product domain,
this result can be considered as an improvement on the previous method.

Vandic et al. [36] focus on the utility of the Semantic Web in the product search
domain. They claim that current keyword-based index lookups are insufficient, be-
cause users are not able to search for specific product features. Therefore, shoppers
must rely on the price as the sole indicator for a buying decision. As an alterna-
tive, they propose and implement xploreproducts.com, a product search engine that
enables the user to query for additional attributes. They identify two challenges.
First, the identification of identical products and, second, the mapping of distinct
product categories. Since we rely on a simple join on the product identifier in this
Thesis, we will not describe Vandic et al.’s contribution to the identity resolution
task. Regarding the second challenge, their idea for matching the product category
is based on string-similarity methods, namely Levenshtein- and Cosine-similarity,
however, they add a hierarchical component. The categories at the end of the class-
label are weighted higher than the ones further up the hierarchy. Given two classes
c1 = (lg,13,12,11) and co = (k3, ko, k1), where the higher indexed categories are
closer to the root, the similarities (I3, k1), (l2, k2), and (I3, k3) are computed and
aggregated by a weighted sum. If one class is deeper than the other, in this case c;,
all unmatched categories (l4) are ignored. In their experiments, this hierarchical
approach outperforms the algorithm by Park and Kim [28].

3.4 Categorization of Taxonomy Matching Approaches

The classification trees presented by Euzenat and Shvaiko [13] that are shown in
Figure 3.1 display two ways to classify ontology matching approaches. Since tax-
onomies are a subset of ontologies with very few restrictions, not all methods and
paths of those categorization models apply to them. Thus, we present a simplified
way to cluster taxonomy matching algorithms in this Section and use this classi-
fication method to categorize the contributions that have been cited earlier in this
Chapter. In order to provide an overview of all taxonomy matching algorithms
used throughout this Thesis, we will include the matching algorithms that will be
introduced in Chapter 5. Our categorization system has a matrix form, where each
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algorithm can be in one of the following four categories: static-internal, static-
external, learning-internal, or learning-external. In the following, we explain those
labels and assign the taxonomy matching methods to a category in Table 3.1.

The first group of algorithms is string-based. They use the class-labels as the
input and assign a label to each pair based on string-similarity measures. This may
include Levenshtein- or N-Gram-similarity on the full strings or some combina-
tion of those two. The methods may also use the hierarchical structure to build
a weighted sum of similarities of the sub-categories. Using the Granularity inter-
pretation of Euzenat and Shvaiko [13], this would correspond to a combination of
“Element Level > Syntactic > String-Based” and ”Structure-Level > Syntactic >
Taxonomy-Based”. We will categorize them as internal-static since they do not rely
on external knowledge bases and, apart from some hyperparameter tuning, they do
not benefit from training examples and, therefore, return static predictions that do
not change over time.

The second group uses external knowledge bases to bridge semantic gaps in
the taxonomies, which exist as a result of the usage of different vocabularies dur-
ing the construction. The most common variant is the use of WordNet [24] to
detect synonyms. Methods in this group often combine the results from the exter-
nal knowledge base with the string-similarity measures in the preceding group, but
are not limited to them. We call this group external-static since external knowledge
bases are used during the prediction, but the effect of training examples is, again,
limited to hyperparameter optimization. In the classification system shown in Fig-
ure 3.1 they would fall into the “Informal Resource-Based” and ”Language-Based”
group and may use methods from the ”String-Based” approaches.

The last group of algorithms that we have identified and employ in this pa-
per are machine learning algorithms. They use an encoding model, e.g., BoW or
word2vec, to transform the class-labels into vectors and learn an optimal set of
parameters from training data. We label those models as internal-learning. While
they may use external data to train the embedding model, they do not use this
external knowledge during the prediction phase. We can actually treat the encod-
ing method as a black-box that simply produces a vector given a class-label. We
consider them learning instead of static since they change their prediction based
on the training examples they are presented with. The machine learning methods
may also use the taxonomic structure of the class-labels during the translation into
features vectors. This third group is not part of the categorization introduced by
Euzenat and Shvaiko [13]. This may result from the recent rise in the capabilities
of machine learning compared to the models that were available in 2011.

In conclusion, we identified three groups in the set of taxonomy matching ap-
proaches. Looking at the matrix structure of our classification approach, there may
also be a group of external-learning algorithms, i.e., approaches that combine ma-



CHAPTER 3. RELATED WORK 20

chine learning with external knowledge bases at runtime, but we are not aware of
any contribution that falls into this domain. In Table 3.1, we categorize all contri-
butions that are introduced in this Chapter and the methods used throughout this
Thesis.

Internal External
Learning | * Meusel et al. [22]

* Zhang and Paramita [38]

* Agrawal and Srikant [4]
 Papadimitriou et al. [27]

* Open Source Machine Learn-

ing Classifiers

Static | ¢ Levenshtein-Similarity e Park and Kim [28]
* N-Gram-similarity e SCHEMA [2]
¢ Vandic et al. [36] e Sabou et al. [34]

S-Match [14]

Table 3.1: Classification of Taxonomy Matching Approaches.

In this Chapter we saw that there is a multitude of approaches for taxonomy
matching. While we have tried to find a good distinction between the methods,
there is still some overlap. Many contributions extend existing ideas, instead of
approaching the problem from a completely new perspective. An example is the
usage of WordNet in combination with string-similarity. An interesting extension
would be the usage of external knowledge bases in combination with machine
learning models.



Chapter 4

Training Data Creation

In this Chapter, we describe how we created our training dataset and the gold stan-
dard that we use in the upcoming Chapters to train and evaluate different taxonomy
matching approaches. First, we will look at different approaches on how to use the
Semantic Web to generate an extensive collection of product data and use anno-
tated identifiers to match products across different e-commerce platforms. Next,
we describe how those instance pairs were used to create a training dataset of two
classes that are part of different e-commerce taxonomies and a corresponding label
that indicates if those classes are equal to each other, if one class contains the other
or if they are disjoint. Furthermore, we introduce a method to provide edge case ex-
amples that are close to our positive labels (equal, contains, contained-in), but are
actually disjoint. This Chapter is concluded by an overview of the inherent statis-
tics of our gold standard. Here, we describe the depth of the covered taxonomies
and visualize the distribution of labels.

4.1 Retrieving Product Information from the Semantic Web

This Section outlines an approach to retrieve product specific information from
the Semantic Web. The first approach is based on the work of the WDC project
and a second approach crawls large retailers directly and extracts the data we are
interested in.

4.1.1 Web Data Commons Product Dataset and Gold Standard

As outlined in Section 2.1 the Semantic Web provides machine-readable informa-
tion in annotated HTML-code. The WDC project provides class-specific datasets
that are based on schema.org data and extracted from the Common Crawl cor-

21
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pus [21]. In addition, Petrovski et al. [30] created a gold standard that contains
product matches based on shared identifiers and other indicators.

For this Thesis, the product class-specific dataset is used, which contains about
300 million products stored as quads. The file layout is ”<subject> <predicate>
<object> <source>.”, e.g., ”_nodeabcd <http://schema.org/Product/name> ’Soc-
cer Ball’ <http://123stores.com/shopby/?brand=1214> .

There are multiple ways to describe the class of a product in the schema.org
notation. The most used properties are "Category”, ”"Breadcrumb”, and the use of
a "BreadCrumbList” that links to the individual levels of the class hierarchy. As
a first step, the quads were parsed and a set of <nodeld>, <breadcrumb>> tuples
created that were joined with the WDC gold standard for product matching [30].
This resulted in a dataset that contains the productld, the source URI, and the class
of the product. Using the clusters of the WDC gold standard it was also possible
to assign a high-level category to each product. Next, a self-join with the dataset is
performed to create product pairs that can later be labelled.

Unfortunately, the resulting dataset is to small for the remaining analysis. Most
PLDs contain only a few products. Hence, we favor the approach introduced in the
next Section in which we prefer a deep crawl of individual pages over a broad crawl
across the web.

4.1.2 Crawling Product Data from the Semantic Web

Another way to get product data from the web is a self-written crawler that targets
e-commerce sites directly. The Common Crawl corpus has a broad coverage of
different domains, but the number of pages per domain is comparatively small.
A self-written crawler has the advantage that all sub-pages of a domain can be
crawled and only the content of interest is extracted.

Scrapy is an “open source [...] framework for extracting the data you need
from websites. In a fast, simple, yet extensible way” [1]. The data of the follow-
ing PLDs was crawled as a foundation for our experiments: amazon.com, wal-
mart.com, ebay.com, bestbuy.com, newegg.com, and overstock.com.

Since the number of PLDs that were crawled is small, there was no need for
a generic schema.org extraction framework like LDSpider [15]. Instead, we use
XPath to parse the Document Object Model (DOM)-tree of an HTML-file to get the
relevant properties per page. Those were the identifiers, the class, and the source-
URI of the product. Again, a self-join over the identifiers resulted in product pairs.

This Section introduced two approaches to generate a set of product-pairs that
have the same underlying entity, identified by a set of product identifiers, and dis-
tinct categories that were assigned by the individual online-shops.
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4.2 Assigning Semantic Labels to Class-Pairs

In this Section, a method is introduced to transform the product-pairs into class-
pairs with a semantic label. A sample from the resulting training dataset is provided
in Table 4.1. Table 4.1 consists of five columns. “pld_1” and ”pld_r” indicate the

pld.1 class_l pld_r class_r label
amazon [...] Women > bestbuy [...] All Smart- | contained-in
Smartwatches watches
amazon [...] Binocu- bestbuy [...] Camera Straps | equal
lar, Camera &
Camcorder Straps

Table 4.1: Training Dataset Sample.

source of the left and right class labels. ”class_1” and “class_r” are the hierarchical
class-labels, where > indicates the different categories. For the visualisation, we
removed the first parts of the class-labels. Finally, “label” is the label that our
approach assigned. The remainder of this Section will cover the creation of this
training dataset based on the product-pairs.

Following Euzenat and Shvaiko [13, p. 113] ”’[the] easiest way to compare
classes when they share instances is to test the intersection of their instance set A
and B and to consider that these classes are very similar when AN B = A = B,
more general when AN B = Bor AN B = A” It s, therefore, possible to infer
the label with the set relation. AN B = A = B indicates equality, AN B = B and
AN B = A indicate that A contains B and A is contained in B, respectively, and,
finally, AN B = () indicates disjointness. The term overlap is used in case none
of the above conditions hold [18]. An overlap occurs when the classes have some
products in common, but both classes contain products that also have other classes
in the other taxonomy.

As the next step, the labels for each class-label pair were computed. Algo-
rithm 1 provides pseudo-code for the labelling of the training dataset.

For every PLD-pair, every possible class-label pair is computed. Then, for each
class-label pair, the set of product-pairs with a match of the left class and the set
of product-pairs with a match of the right class is computed. Those are called left
and right in the algorithm. Finally, the set of product-pairs with a match of the left
and the right class are computed and the set logic from above is applied to assign
the labels.

Using this setup, each possible class-pair per PLD-pair gets a label that depends
on the number of shared instances.
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Algorithm 1 Class-Label Pair Labelling

TRAINING DATASET(tuples, pld_pairs)

1: loop

2:  for pair < pld_pairs do

3 for class_l < tuples.pld[pair|0]] do

4 for class_r < tuples.pld|pair|l]] do

5: left < tuples.class|class_]

6 right < tuples.class[class_r]

7 intersection < tuples.class|[class_1&class_r]
8 if intersection = () then

9: return disjoint

10: end if

11: if intersection = left = right then
12: return equal

13: end if

14: if intersection = left then
15: return contained — in

16: end if

17: if intersection = right then
18: return contains

19: end if

20: return overlap

21: end for

22: end for

23:  end for
24: end loop
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In this Section a setup was introduced to transform the product-pairs from Sec-
tion 4.1 into a labelled training dataset that consists of class-pairs with a label
indicating that two classes are equal or disjoint or if one class is more general than
the other.

4.3 Generating Corner-Cases

During the creation of the training dataset, we pair all different class labels between
two taxonomies and assign a label to each of those pairs stating if they are equal or
if one contains the other or if they are disjoint. We plan to use this labelled data for
the training and evaluation of taxonomy matching methods.

This results in a huge amount of negative data samples since it will also include
obvious mismatches like ”Clothing > Pants > Mens Jeans” and “Electronics >
Camera & Photo > Digital Cameras”. Hence, it is likely that the algorithm will
have an easy time to label those as disjoint examples and may not be able to identify
the most discriminating features to classify positive classes.

A common approach to tackle this problem is the inclusion of edge-cases in
the training data. Those are samples that are very close to the positively labelled
instance, but should receive a negative prediction from the matcher. Therefore, we
generate artificial edge-cases for the disjoint label and add those to our training
data. Since we are interested in samples that are close, but disjoint, we use the
taxonomic structure of the instances that are already part of our training dataset.
The tree structure below illustrates a fictitious taxonomy from an electronic e-
commerce platform.

Electronics

| - Cameras

| |- Digital Cameras
| |- Polaroid Cameras
|- TVs

Instead of searching across two taxonomies for edge-cases, we simply add leaves
in the taxonomy tree that share a parent and label them as disjoint. In the example
above, the class-labels for “Electronics > Cameras > Digital Cameras” and for
“Electronics > Cameras > Polaroid Cameras” are close, but we can be certain that
they are disjoint.

We search through the complete training dataset that we derived from the Se-
mantic Web for class-label pairs that share their immediate parent and add those as
additional edge-cases to the training dataset.
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4.4 Class Label Balancing

Including the edge-cases, as described in Section 4.3, the training set consists of
1,057 positive examples and 1,030,497 negative examples. Out of those 1,030,497
negative examples, 25,674 were artificially generated. This results in a ratio of 1
positive example for 947 negative examples.

Many machine learning algorithms struggle if the number of class-labels are
significantly imbalanced [10]. On the one hand, the training time increases sig-
nificantly, since more examples have to be processed, but most of the negative
examples may have a low information content, as the disjoint example given at the
beginning of the previous Section illustrates. On the other hand, there may not be
enough positive examples to learn relevant features for the classification. We will
introduce the two approaches we use to mitigate those problems in this Section.

First, we use under-sampling approaches to reduce the number of negative sam-
ples [10]. Out of all actual disjoint pairs (excluding artificially generated edge-
cases), we retain 0.5 percent. From the generated disjoint pairs, we retain 10 per-
cent. We provide a fixed random-seed for the sampling to make sure that the ex-
periment results are deterministic across multiple runs and are not influenced by
different samples. Overall, this reduces the number of disjoint pairs in our train-
ing set to 5784 and results in a ratio of 1 positive example for about 6 negative
examples.

We use the resulting, smaller dataset for the training and evaluation of all text-
based taxonomy matching models. Since the training data is used to find an optimal
decision threshold, the value added by additional positive samples (over-sampling)
is negligible.

The machine learning algorithms also profit from additional positive examples.
In addition to the under-sampling of the majority class, we add over-sampling of
the minority classes. Chawla et al. [10] introduce the Synthetic Minority Over-
sampling TEchnique (SMOTE) and show that the “combination of SMOTE and
under-sampling performs better than plain under-sampling”. They also prove that
synthetic minority examples generated by SMOTE improve the classification per-
formance of multiple machine learning models compared to over-sampling by
replicating positive instances.

To generate new samples, SMOTE takes multiple instances of the minority
class in a nearest-neighbors fashion and interpolates a new example at a random
point between these two. This creates artificial positive examples to balance the
class-distribution during the training of machine learning models.

In this Section, we introduced two approaches for dealing with our imbalanced
training data. We used random under-sampling during the training of text-based
classifiers and, in addition, over-sampling with SMOTE for the machine learning
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models. We expect that under-sampling of disjoint class-label pairs reduces the
overall training time without sacrificing performance. The over-sampling based
on SMOTE should increase the performance of the machine learning models since
they will have more positive training data.

4.5 Gold Standard Creation and Dataset Statistics

In addition to the automatically labelled product class-label pairs, we manually
checked 739 positive product class-label pairs and updated their label if necessary.
Since two classes are only labelled as disjoint by Algorithm 1 if they have no
instances in common, and we also create artificial corner-cases that are guaranteed
to be disjoint, we have high confidence that disjoint labels are assigned correctly.
Yet, we found that the instance-based automatic annotation assigns wrong labels
if one e-commerce platform has many products in a certain class and the other
only a few. In those cases, an equal class-label pair may still receive a contains
or contained-in label. To avoid those pitfalls and get a high-quality dataset for our
evaluation, we created a gold standard from the training dataset.

In the remainder of this Section, we present the properties of the gold standard
that we use for the evaluation of the taxonomy matching algorithm that we de-
scribe in the upcoming Chapter. Overall it contains 241 equal, 257 contains, 241
contained-in, and 5045 disjoint class-label pairs.

Figure 4.1 illustrates the distribution of the positive labels between different
PLD-pairs. We can see that the PLD-pairs ”(amazon, ebay)” and ”(bestbuy, ebay)”
have comparatively few contains class-label pairs. This indicates that amazon and
bestbuy use higher-level classes, compared to fine-granular class-labels for ebay.
Apart from those two PLD-pairs, every positive label has at least ten instances for
each PLD-pair.

We use those PLD-pairs for nested cross-validation during our experiments. To
use all gold standard examples during the training and the evaluation, we hold out
one of the seven PLD-pairs for each training session and use it to evaluate the mod-
els afterwards. We aggregate those intermediate results to arrive at the numbers we
present in Chapter 6. In each iteration, we use the remaining six PLD-pairs to train
our models and perform k-fold cross-validation to optimize hyperparameters.

While the GPC standard uses only three hierarchy-levels for their product class-
labels, our dataset indicates that real-world e-commerce platforms use deeper tax-
onomies. Figure 4.2 visualizes the number of categories per class-label. We see
that a class-label consists of 4 to 5 categories on average. This indicates that pre-
vious contributions in the taxonomy matching domain that use the GPC may make
the simplifying assumption that a class-label consists of at most three categories.
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Therefore, their results may not hold up on real-world taxonomies from large e-
commerce platforms.



Chapter 5

Product Taxonomy Matching
Methods

This Chapter focuses on methods to produce matches in taxonomies and we will
describe concrete implementations. The focus lies on three subcategories of algo-
rithms. We start with very simple ones that we can use as baselines in our experi-
ments, then move on to unsupervised algorithms that use external knowledge, like
WordNet!, and, finally, describe supervised learning algorithms. They are trained
on our dataset and then make predictions on previously unseen pairs.

The goal of each method is to assign a label to a pair of two classes that indi-
cates if they are equal to each other, if one contains the other, or if they are disjoint,
i.e., describing a disjunct set of entities.

In our implementation, all methods are implemented as normalized similarity
measures instead of distances, i.e., the results are in a range between 0 and 1 and
very similar class-labels are closer to 1. A distance is O when the two inputs match
and increases when their similarity decreases.

5.1 Baseline Methods

In this Section, we will present simple models that mostly work on the raw cat-
egory string. We start with the Levenshtein- or Edit-similarity, move on to the
N-Gram-similarity and conclude with a Path Distance (PD) measure that extends
the Levenshtein- and N-Gram-similarity to hierarchies.

"https://wordnet .princeton.edu. Accessed: 01.05.2020
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5.1.1 Levenshtein- or Edit-Similarity

The Levenshtein- or Edit-distance is a simple way to measure the distance between
two strings. It supports a specific set of mutations, and the distance is the number of
mutations to get from one input to another. The allowed operations are substitution,
addition, and deletion of individual characters [20]. Let us compute the distance
between “rose” and “close”. First, we can replace the ”r”” with an ”’1” to arrive at
”lose” and then add a ’c” to the left. The edit distance between rose” and close”
is, therefore, two.

Since the edit distance is highly dependent on the length of the word, we use a
normalized distance where we subtract the number of edits divided by the longer
string from one. This subtraction result converts the distance measure into a simi-
larity.

Levenshteing;si(s1, s2)
~ max(len(s1), len(sz))

Levenshteingim, (s1, s2) =

We will use the term Levenshtein-similarity from now on to describe this method.
The Levenshtein-similarity returns a result between 0 and 1, with 0 meaning that
there is no relation at all and 1 meaning that the two strings are the same.

We test multiple thresholds of similarity values on a training dataset and select
the best-performing threshold for the final prediction. At this point, we need to
integrate another trick since we not only want to predict similarity, but also if one
category contains the other or vice versa. We will apply this trick to all coming
measures that only provide a similarity and point to this explanation for reference.

To predict the label, we compute multiple distances. Obviously, we predict
one label between the two unaltered class-labels, but, additionally, we remove the
lowest category in the left and right class-label and compare it with the unaltered
right and left class-label. If such a redacted label is closer to the other class-label,
we predict containment instead of equality. Of those three scores, we take the
maximum and, if it exceeds the similarity threshold, we use it to label the category
pair.

The following example will illustrate this. Assume that we want to compare
”Clothing, Shoes & Jewelry > Women > Watches > Smartwatches” with ~Wear-
able Technology > Smartwatches & Accessories > All Smartwatches”. We com-
pute the following edit distances:

* ”Clothing, Shoes & Jewelry > Women > Watches > Smartwatches” with
”Wearable Technology > Smartwatches & Accessories > All Smartwatches”

* ”Clothing, Shoes & Jewelry > Women > Watches” with "Wearable Tech-
nology > Smartwatches & Accessories > All Smartwatches”
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* ”Clothing, Shoes & Jewelry > Women > Watches > Smartwatches” with
”Wearable Technology > Smartwatches & Accessories”

This results in the following tuple of predictions: (0.34, 0.28, 0.3). In the example
above, the Levenshtein-similarity would assign the label equal if the threshold is
exceeded.

5.1.2 N-Gram-Similarity

This Subsection describes the N-Gram-similarity. Similar to the Levenshtein-similarity,

it only compares the string without any background knowledge about the hierar-
chical structure of the input categories.

Euzenat and Shvaiko describe the N-Gram-similarity as follows: ”The n-gram
similarity is often used in comparing strings. It computes the number of common
n-grams, i.e.,, strings of n characters, between them. For instance, trigrams for the

string “article” are “art”, rti”, ’tic”, "icl”, “cle”.” [13, p. 90] The formula for the
normalized N-Gram-similarity is given as:

5(s,1) |ngram(s,n) N ngram(t,n)|
a(s,t) =
’ min(|s|, |¢]) —n +1

Again, we test multiple thresholds for the similarity and, since we have another
parameter n, also multiple values for n and select the best parameter combination
on the training set.

To predict not only equality, but also contains and contained-in, we follow the
same procedure as already described in Subsection 5.1.1.

We conclude the N-Gram description by giving an example of how the simi-
larity works. We compare “Clothing, Shoes & Jewelry > Women > Watches >
Smartwatches” with ”"Wearable Technology > Smartwatches & Accessories > All
Smartwatches” with n = 3. Splitting the first string into trigrams results in the
following set:

{(re’, "s’, " "), ("3, 'e’, 'w), ("o, 'm', "e’), ('h’
("a’, "r’, 't’), (‘c’, 'h’, 'e’), ('m’, 'a’, 'r’), (' ',
("C’, "17, 7o'y, ("o', fe’, 's'), (" ', >, " ), (‘h,
(‘n’, " 7, '>"), ("h’, o', 'e’), (‘w, 'e’, '1'), (e,
(,l,I ,O,l ,t,)/ (,/,/ ! ,/ ,S,)/ (, ,I ,&,/ ! ,)I (,r,/
("i7, ‘n’, rgty, (Us', ot reT), (>0, T, W), (s,
(It/, /h/, /ll), (/el, Iw/, /e/), (Iy/, 4 I, I>/), (/&/,
(xt,ryt, ), ST, T, ral), (L, xf, yh), (0>,
(/m/, Ie/, /nl), (/ I, /W/, Ia/), (Ig/, /,I, ’ /), (/OI,
("t’, 'c’, 'h'), (‘w', 'a’, 't’), ('W, 'a’, 't’), ('s’,
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(ltl, le, Ial), (IWI, IOI, Iml), (laI, Itl, ICI), (l 4
(I I, lJl, Iel), (’1’1', Ig’, l,l), (leI, Ill, Irl), (l 4
We carry out the same for the second class and compute the number of intersect-

ing trigrams for both sets. We plug this into the nominator of the formula above,
calculate the denominator and arrive at a similarity of 0.321 for the two strings.

5.1.3 Path Similarity

The two baselines methods that we described previously take the full string into ac-
count without considering the hierarchical structure of it. We introduce a measure
that extends those methods to hierarchical strings in this Subsection.

Classes at the top of a hierarchy are, per definition, broader than classes at the
lower levels. In case we want to check if two classes contain the same products,
the lower levels are, therefore, more relevant to our computation.

The path similarity takes this into account and puts high weight on the com-
parison of the last elements while reducing the importance of the remainder. It is
derived from the path distance given in [13, p. 95], but we implemented it using
similarities. We define path similarity as:

o5, 4™) = A+ (5", 4™ + (1= ) (s, 1 D)

where s" and """ are sequences of strings and & is a string-based similarity function,
like one of those introduced in Subsection 5.1.1 and 5.1.2. If one sequence is
empty, o returns O as the similarity.

Again, we apply the similarity function to “Clothing, Shoes & Jewelry >
Women > Watches > Smartwatches” with "Wearable Technology > Smartwatches
& Accessories > All Smartwatches” and use the Levenshtein-similarity internally.
We assume that A = 0.7. First, we compare “Smartwatches” with ”All Smart-
watches” with the Levenshtein-similarity and multiply this with A. This results
in an intermediary result of 0.525. Next, we call the path-similarity recursively
with the remainder, i.e., ”’Clothing, Shoes & Jewelry > Women > Watches” and
”Wearable Technology > Smartwatches & Accessories”. The result is multiplied
with 0.3 and added to the already computed 0.525. In the last recursive call, we
compare “Clothing, Shoes & Jewelry” with nothing and, in this case, simply return
0.

The overall similarity between our input strings is 0.583. In our experiments,
we will use the Levenshtein- and N-Gram-similarity for 6.

In this Section, we introduced three baseline methods that use simple string
similarity measures and one that uses the hierarchical structure to compute a sim-
ilarity between two classes. They will serve as a baseline to compare the more
advanced algorithms to, which we will present in the coming sections.
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5.2 WordNet-Based Matching Methods

This Section covers unsupervised taxonomy matching methods, i.e., methods that
take as input the raw classes and other static third-party resources like Word-
Net [24]. We only use the training dataset to optimize certain hyperparameters.
First, we introduce S-Match or Semantic Match [14], which is a generic taxonomy
mapping algorithm that provides semantic annotations, i.e., not only equal or best-
match predictions, but also labels for contains, contained-in, and disjoint relations.
The second algorithm is an extension of the product taxonomy mapping algorithm
by Park and Kim [28] and is called SCHEMA [2].

5.2.1 S-Match

Giunchiglia et al. [14] state that S-Match is based on two fundamental ideas:
» Discover mappings by computing semantic relations.
* Determine semantic relations by analyzing the meaning.

Contrary to the approaches we described earlier, there is no threshold or hyperpa-
rameter that we can tune. Instead of computing a similarity, the algorithm translates
the taxonomies into a satisfiability problem and computes a relation directly.

The authors use specific terms to identify parts of the taxonomy. We will first
introduce the terms and then describe the individual steps of the algorithm. A
taxonomy is a tree-like structure and consists of labels and nodes. Labels are indi-
vidual edges in the tree, e.g., ’Clothing, Shoes & Jewelry > Women > Watches >
Smartwatches” contains the labels "Women”, ”Watches”, etc. The whole string is
called a node. In our case “node” translates to ’class-label” and “’label” to “cate-
gory”. We will continue the explanation using our terms.

S-Match has four steps that are used to match two taxonomies:

1. Compute the concepts of all categories in the tree.

2. Compute the concepts of all class-labels in the tree.

3. Compute relation between all concepts of category-pairs.
4. Compute relation between all concepts of class-label pairs.

Step 1 takes each category, e.g., "Watches”, and computes the meaning of
the category. To extract the meaning, S-Match relies on an external source or
oracle, in this case, WordNet. Instead of using “Clothing, Shoes & Jewelry” di-
rectly, the terms are first split up (tokenized), then reduced to a normalized form
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(stemmed) and then mapped to one or more WordNet senses. The provided exam-
ple would result in ”Clothing — Shoes — Jewelry” = ”Cloth — Shoe — Jewelry”
= "cloth.n.01 — shoe.n.01 — jewelry.n.01”. In the case of multiple terms, we take
the logical disjunction of them and use it as the concept of the category. The con-
cept of the category “Clothing, Shoes & Jewelry” would, therefore, be cloth.n.0.1
V shoe.n.01 V jewelry.n.01”.

The next step combines the concept of all categories in a class-label into the
concept of a class-label. We use the conjunction of category concepts, which would
result in the following logical formula for our example: “’(cloth.n.0.1 V shoe.n.01
V jewelry.n.01) A (women.n.01) A (watch.n.01) A (smartwach.n.01)”.

All of the steps above only rely on information present in a single taxonomy
and the corresponding oracle. Hence, we can consider them as “offline” since
they can be precomputed. The last two steps combine information from multiple
taxonomies and are, therefore, considered to be ”online”.

In the third step, we build up a relation matrix between the concepts of cate-
gories. Every category in the one taxonomy is matched with every category from
the other taxonomy using a group of matchers.

Matcher name Execution|Approximation| Matcher Schema info
order level type

Prefix 2 2 String-based Labels
Suffix 3 2 String-based Labels
Edit distance 4 2 String-based Labels
Ngram 5 2 String-based Labels
Text corpus 12 3 String-based|Labels + corpus
WordNet 1 1 Sense-based | WordNet senses
Hierarchy distance 6 3 Sense-based | WordNet senses
‘WordNet gloss 7 3 Gloss-based | WordNet senses
Extended WordNet gloss 8 3 Gloss-based | WordNet senses
Gloss comparison 9 3 Gloss-based | WordNet senses
Extended gloss comparison 10 3 Gloss-based | WordNet senses
Extended semantic gloss comparison 11 3 Gloss-based | WordNet senses

Figure 5.1: S-Match Matching Methods [14]

As we can see in Figure 5.1 the matchers are categorized into three approxi-
mation levels. The first level relies strictly on the WordNet meaning computed in
step 1 and relations returned by it are always correct. In case a matcher on one
level does not provide a confident prediction, there is an automatic fallback to the
next method and level. The second approximation level relies mostly on the actual
strings of the category. String-based methods like the Levenshtein-similarity are
used, and in case they are unable to provide a relation additional, but more unreli-
able, features of WordNet are applied. Some of those are inspired by COMA++ by
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Aumueller et al. [7].

Now, that the category relations are available, we can match class-labels. To
do this, we will compare the class-label already given above with “Jewelry &
Watches > Watches, Parts & Accessories”. S-Match predicts a relation between
the first two categories in both nodes, but is not sure which relations holds. It
gives a firm prediction that “Watches” is contained-in “Watches, Parts & Acces-
sories”. This is translated into a satisfiability problem of the form axiom —
rel(concept;, concept, ) where rel is the relation we want to prove. In this case,
we will simply try the contained-in relation, formulate the negation axiom A
—rel(concept;, concept,). At this point in time, DPLL [11] is used to check for
satisfiability, and if it finds a contradiction, we predict the given relation.

The authors provide an implementation that is hosted on GitHub?, which we
will reuse for our experiments.

5.2.2 SCHEMA

The second algorithm in this Section is SCHEMA by Aanen et al. [2]. It extends
on the ideas of Park and Kim [28] in the sense that they also use word sense disam-
biguation on top of WordNet [24]. Since SCHEMA is supposed to be a mapping
algorithm that simply finds the best-match between two nodes in a taxonomy, we
deviate slightly from the algorithm described by Aanen et al. The algorithm also
provides a semantic match in the sense that it compares a source and a target node
and predicts if the source node contains the target node. To map this to our desired
outputs, we take each node as a source and as a target node. If they are both la-
belled as supersets of each other, we predict equal. If only one is a superset of the
other, we label it as contains, and if none of the above conditions apply, we label
the pair as disjoint.
SCHEMA is implemented in three steps:

1. Source Category Disambiguation.
2. Candidate Target Category Selection.
3. Candidate Target Path Key Comparison.

The first step takes the source category and tries to find its intended meaning. Com-
posite classes frequently occur in product taxonomies. We already saw an example
in the previous Section: ’Clothing, Shoes & Jewelry”. All of those could be a class
in itself and may lead to problems, since another online shop may combine their

https://github.com/opendatatrentino/s-match. Accessed: 01.05.2020
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products in different composite classes. Hence, they are separated into a split-term
set.

Now, the sense for every split-term is computed. The authors propose to use
WordNet to get synonyms of the current term and, to exclude misleading senses,
use the terms in the parent element of the hierarchy to provide a context to filter
the synonyms. Taking “Watches > Bands” as an example, we would take "Bands”
as the split term set and compute its synonyms. Now, it might be possible that a
”Band” in terms of a music-making group is included there. SCHEMA also adds
the context of ”Watches” into this consideration and, therefore, the music-making
group can be excluded, while the sense of a watch-band is retained. The foundation
of this idea is taken from Lesk [19].

Given the senses and synonyms of the source category, close categories in the
target taxonomy can be found. For each pair of categories, a semantic match is
computed that labels the target category as containing the source category or the
two categories as disjoint. Similar to S-Match 5.2.1 there are multiple matchers
used in this prediction. The target category contains the source category, if the
senses of the source category are a subset of it, e.g., ”Shoe” as the source category
would be contained-in ”Clothing, Shoes & Jewelry”. If this is ambiguous, the
Levenshtein-similarity is applied, and if it exceeds a given threshold, the source
category is also labelled as being a subset of the target category.

Out of the target categories that contain the source relation, SCHEMA would
try to find the best match in the third step to create a mapping between them. Since
we want to compare two categories directly, we skip the third step and, instead,
switch source and target categories and run the prediction again. This results in an
equal, contains, contained-in or disjoint prediction.

Our implementation is based on an open-source implementation of SCHEMA
with a few extensions to our use case. See GitHub? for the reference implementa-
tion.

5.3 Supervised Taxonomy Matching Methods

One of the major drawbacks of the WordNet-based taxonomy matching methods
is that the WordNet corpus is kind of small compared to the number of possible
words that may be used in taxonomies across the web. If the word is out of the
given vocabulary, no synonyms and, therefore, no similarity can be computed.

We propose multiple methods in the following Section that introduce certain
ways to avoid this limitation of WordNet-based models.

*https://github.com/nudge/schema. Accessed: 01.05.2020
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At first, we will have a look at word embedding based models following Zhang
et al. [37]. Then, we use standard Python libraries to derive features from the given
classes and apply machine learning classification algorithms.

5.3.1 Ontology Matching with Word Embeddings

Zhang et al. [37] claim that the WordNet corpus is insufficient for taxonomy match-
ing and propose to use word embeddings instead. They use word2vec [23] on the
Wikipedia corpus to compute an embedding of each word and apply the Cosine
similarity (CS) to calculate the similarity between words. For each entity in one
taxonomy, they find the most similar entity in the other taxonomy given the entity’s
embedding.

While word embeddings are able to greatly enhance the available vocabulary,
they may introduce new problems, since they tend to coalesce semantic similarity
and conceptual association. "Horse” and “Harness” may be similar and in a related
context, but they should not be matched in a taxonomy matching task [17].

Since Zhang et al. only try to find the most similar class and we intend to
classify a pair of classes, we use a slightly different setup. We employ a pre-
trained word2vec model trained on about 100 billion Google news word that can be
downloaded via Gensim [33]. For every word in a class, we retrieve its embedding,
a 300-dimensional vector, and take an average of the individual word vectors to
represent the whole class. Afterwards, we compute the similarity for both complete
class-labels and with the lowest category removed on each class as as performed in
Section 5.1.1 and 5.1.2.

We use those similarity scores to make a prediction. If a word is still not
included in our vocabulary, we simply ignore it. A possible future extension may
be the usage of fastText* that also enables the embedding of out-of-vocabulary
words. Another extension could be an increased weight of the lower-level labels in
the class hierarchy.

5.3.2 Machine Learning Classification

The problem we cover in this Thesis is finding the most suitable label for a pair
of classes that come from e-commerce product taxonomies. This can be reduced
to a standard machine learning classification, where two inputs are given and an
output label should be predicted. We, therefore, deviate from the approaches of the
ontology matching literature and focus on standard machine learning classification
algorithms as provided by scikit-learn’.

‘https://fasttext.cc. Accessed: 01.05.2020
Shttps://scikit-learn.org/stable/index.html. Accessed: 01.05.2020
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To apply the machine learning algorithms, we have to transform our class
strings into a numeric vector that can be fed into the models. We use the included
CountVectorizer®, which indicates basically how often a certain word appears in
the given string. We also use the word2vec model to compare the results of both
embedding models.

Imagine a dataset of the following strings:

* One Ring to rule them all, One Ring to find them,

* One Ring to bring them all and in the darkness bind them.

If we reduce our vocabulary to the strings [one, ring, rule, them, all, find, darkness,
bind, bring] the two sentences result in the following vectors:

*[2,2,1,2,1,1,0,0,0]
* [1,1,0,2,1,0,1,1,1]

Since product taxonomies are structured, they do not contain any stop word that
should usually be removed. We also expect words to be normally distributed and,
therefore, do not weight the results by inverse document frequency (c.f. tf-idf). The
resulting vector has a number of dimensions that is equal to the vocabulary size.
Next, the input dataset is transformed by replacing the strings with vectors and
concatenating the two vectors to produce a single feature vector.

For the prediction, we considered the following classification models. We
started with multinomial Naive Bayes, “one of the two classic naive Bayes variants
used in text classification”’. Based on the training data, a distribution is parame-
terized that predicts the probability of a label, given the evidence.

The next algorithm is Stochastic Gradient Descent (SGD)?, which trains a lin-
ear classifier (Support Vector Machine (SVM)/Logistic Regression) depending on
the provided loss function. In our case, the optimal loss function is derived via
the grid search. A linear classifier aims to find a decision boundary or hyperplane
that separates differently labelled points in the vector space and makes predictions
based on this hyperplane.

We also use AdaBoost’, an ensemble method that combines multiple classifiers
to enhance its predictions. It relies on simple decision trees and, after finding a

®https://scikit-learn.org/stable/modules/generated/sklearn.
feature\_extraction.text.CountVectorizer.html. Accessed: 01.05.2020
"nttps://scikit-learn.org/stable/modules/naive_bayes.html#
multinomial-naive-bayes. Accessed: 01.05.2020
8https://scikit-learn.org/stable/modules/linear_model.html#
stochastic—-gradient-descent—-sgd. Accessed: 01.05.2020
‘https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.AdaBoostClassifier.html. Accessed: 01.05.2020
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good initial fit, it trains additional models with different parameters to optimize for
edge cases.

Finally, we train a Multi-Layer Perceptron (MLP)'°, a kind of Neural Network.
It combines multiple layers of neurons that use a non-linear activation function and
is trained similarly to the SGD models. Sonoda and Murata [35] show that a Neural
Network with sufficient neurons is a universal approximator, i.e., it can represent
any function arbitrarily well. Hence, with sufficient training data and a sufficiently
complex model, we can represent the training data perfectly. Given the limited size
of our gold standard, we will use simple Neural Network models in our evaluation.

To optimize the hyperparameters of the machine learning models, we use grid
search, i.e., different hyperparameters are tested on a subset of the actual training
data and the final model is trained using the optimal hyperparameters and the full
training set. In Table 5.1 we present the parameters that were tested for each model
described above. We will only list the parameters in which we deviated from the
default or, in case the default is among the possible values, highlight it in bold. For
a description of the individual model parameters, we refer the reader to the excel-
lent scikit-learn documentation referenced in the footnote of the specific model.

Model Parameter Values
SGDClassier alpha 0.01, 0.001
loss hinge, modified_huber
AdaBoostClassifier | learning_rate 0.3,1.0,1.7
algorithm SAMME, SAMME.R
MLPClassifier activation logistic, relu
hidden_layer_sizes | (50,), (25, 25), (50, 25)
alpha 0.0001, 0.0003, 0.001

Table 5.1: Grid Search Hyperparameters.

5.4 Summary

In this Chapter, we introduced multiple classification methods for class-label pairs
derived from e-commerce taxonomies. We used naive string matching methods as a
baseline and an enhanced version that takes the hierarchical structure into account.
Two suitable algorithms from related literature were introduced that use WordNet
as an oracle for providing synonyms. Finally, a method based on current research

Yhttps://scikit-learn.org/stable/modules/generated/sklearn.
neural_network.MLPClassifier.html. Accessed: 01.05.2020
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using word embeddings to circumvent WordNet’s limitations and an ensemble of
open source machine learning classification methods were employed.



Chapter 6

Experiment Results

The content of this Chapter is the evaluation of the taxonomy matching algorithms.
We will use the algorithms described in Chapter 5 on our dataset from Chapter 4
and report the results. This Chapter focuses on the raw data and a description of
the experiments and the coming Chapter 7 analyzes possible misclassifications of
some algorithms in more detail and also discusses those results.

Certain metrics are considered important when evaluating an algorithm. We are
interested in the overall precision, recall, and F1-score, i.e., how many class-label
pairs are correctly classified and how many positive tuples we missed.

The F1-score and precision and recall are usually considered for binary classi-
fication problems, especially if the classes are imbalanced. Since our problem is a
multi-label classification problem, we compute the precision, recall, and F1-score
for each class and report them individually. For the hyperparameter tuning, we use
an unweighted average of the Fl-score of the positive labels. This is called the
macro-F1-score.

In general, we consider it more relevant to detect a relationship between two
categories, meaning that a misclassification between equal, contains, and contained-
in should be preferred over a disjoint label since those are under-represented. Even
if we return a certain number of false positives, i.e., disjoint pairs labelled as equal,
contains, or contained-in, the workload for a human to reclassify them would be
greatly reduced, compared to complete manual labelling.

This is also the approach taken by Park and Kim [28] who accept a loss of
precision for higher recall.

The confusion matrices in this Chapter follow the conventions of scikit-learn.
"By definition a confusion matrix C'is such that Cj ; is equal to the number of
observations known to be in group i and predicted to be in group j”!. We will

"https://scikit-learn.org/stable/modules/generated/sklearn.
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illustrate this using the confusion matrix for the Levenshtein-similarity in Table 6.4.
Along the diagonal from top-left to bottom-right, we find all true positives, i.e.,
the number of cases where the true label is predicted. The value 91 in cell C ;
indicates that 91 contains labels are mistakenly predicted as equal.

This Chapter will follow the same structure as Chapter 5. We will start with
the baseline method evaluations and move on to the advanced unsupervised and
supervised models.

The precision, recall, and Fl1-score per method are shown in Tables 6.1, 6.2,
and 6.3.

Method Precision Recall Fl-score
Levenshtein 0.038 0.34 0.067
N-Gram 0.341 0.26 0.288
Levenshtein (PD) 0.035 0.41 0.064
N-Gram (PD) 0.055 0.386 0.083
SCHEMA 0.105 0.091 0.086
Embedding CSS 0.147 0.378 0.207
AdaBoost BoW 0.049 0.177 0.073
Naive Bayes 0.067 0.238 0.103
SGD BoW 0.088 0.094 0.08
S-Match 0.051 0.014 0.021
AdaBoost Embedding 0.044 0.169 0.068
SGD Embedding 0.069 0.219 0.101
MLP 0.206 0.162 0.177

Table 6.1: Precision, Recall, and F1-score for Equal Label.

6.1 Baseline Methods

6.1.1 Levenshtein- or Edit-Similarity

The Levenshtein-similarity is one of the simplest approaches for taxonomy match-
ing and, therefore, we expect mediocre results. It has one of the highest results
for true positives with regard to the equal label with 143 out of 241 labels being
predicted correctly. This is also reflected in the recall of 0.34. This, comparatively,
good recall comes with low precision, though. 2,180 actual disjoint labels were
predicted as equal. In general, we observe a high number of false positives with

metrics.confusion_matrix.html.Accessed:01.05.2020
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Method Precision Recall Fl-score
Levenshtein 0.065 0.017 0.09
N-Gram 0.112 0.149 0.119
Levenshtein (PD) 0.264 0.169 0.188
N-Gram (PD) 0.16 0.128 0.128
SCHEMA 0.049 0.067 0.048
Embedding CSS 0.046 0.245 0.086
AdaBoost BoW 0.035 0.067 0.043
Naive Bayes 0.091 0.141 0.102
SGD BowW 0.079 0.077 0.066
S-Match 0.036 0.026 0.028
AdaBoost Embedding 0.04 0.089 0.051
SGD Embedding 0.052 0.12 0.068
MLP 0.085 0.045 0.054

Table 6.2: Precision, Recall, and F1-score for Contains Label.

Method Precision Recall Fl-score
Levenshtein 0.077 0.198 0.109
N-Gram 0.016 0.183 0.03
Levenshtein (PD) 0.321 0.228 0.258
N-Gram (PD) 0.24 0.205 0.207
SCHEMA 0.042 0.078 0.053
Embedding CSS 0.054 0.245 0.086
AdaBoost BoW 0.096 0.176 0.111
Naive Bayes 0.114 0.223 0.144
SGD BoW 0.13 0.17 0.138
S-Match 0.072 0.1 0.08
AdaBoost Embedding 0.082 0.18 0.107
SGD Embedding 0.121 0.267 0.163
MLP 0.281 0.208 0.228

Table 6.3: Precision, Recall, and F1-score for Contained-In Label.
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the Levenshtein-similarity. 3370 out of 5045 disjoint labels received a positive la-
bel. On the other hand, 109 out of 739 positive examples are labelled as disjoint.
Table 6.4 contains the full confusion matrix.

e c ci d
e| 143 43 37 18
c| 91 93 31 42
ci| 68 49 175 49
d| 2180 646 544 1675

Table 6.4: Levenshtein Confusion Matrix.

6.1.2 N-Gram-Similarity

According to the F1-Score, the N-Gram-similarity model is the best for predicting
the equal label and among the best for contains. Only contained-in has a very low
precision due to a high number of false positives. Again, about 3000 negatives
received a positive label, but those cases are more concentrated among the con-
tains/contained-in label, with the latter making up the majority. The full confusion
matrix is shown in Table 6.5.

e c ci d

e| 101 71 46 23

32 93 69 63

ci| 33 90 73 45
d| 30 259 2679 2077

Table 6.5: N-Gram Confusion Matrix.

6.1.3 Path Similarity

The result for the path-similarity metric based on the Levenshtein-similarity is very
similar for the equal label, but the path similarity significantly outperforms the
Levenshtein-similarity for contains and contained-in. For both of those labels, it
ranks among the best approaches. As with the Levenshtein-similarity, we observe
a high number (2707) of disjoint labels that received an equal label.

The surprisingly good F1-score for the equal label with the N-Gram-similarity
are not replicated with the path distance similarity based on the N-Gram-similarity.



CHAPTER 6. EXPERIMENT RESULTS 46

e c ci d
e| 161 34 24 22
c| 84 89 14 70
ci| 67 28 88 58
d| 2707 203 127 2008

Table 6.6: Levenshtein Path Distance Confusion Matrix.

Instead, the precision, recall, and Fl-score are close to, but slightly better, to
both Levenshtein approaches. The path distance F1-score on the contains label is
slightly better than with pure N-Gram-similarity, and the F1-score for contained-in
outperforms the basic N-Gram-similarity significantly. This is due to a high differ-
ence in the precision of 0.224. The high number of misclassified disjoint labels that
we observed for contained-in labels with the standard N-Gram-similarity shifted to
the equal label. This shift also explains the decline in the F1-score for the equal
label. See Table 6.6 and 6.7 for the path-distance based on Levenshtein and on
N-Gram, respectively.

e c ci d

147 26 35 33

94 50 26 87

ci| 74 17 83 67
d| 2154 146 185 2560

Table 6.7: N-Gram Path Distance Confusion Matrix.

6.2 WordNet-Based Matching Methods

6.2.1 S-Match

The semantic match algorithm introduced by Giunchiglia et al. [14] consistently
ranks among the worst performers across all three positive labels. In the confusion
matrix shown in Table 6.8 we can see that there is a strong tendency to label pairs
as disjoint. Out of 739 actual positive labels, only 131 are labelled as such. That
is before factoring in misclassifications among the positive labels. On the other
hand, the number of disjoint pairs that are classified as positive is one of the lowest
we observe. The accuracy would, therefore, be high, but, as we and other authors
stated previously, the recall is the more important metric for product taxonomy
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matching. One surprising result is that neither contains nor contained-in pairs are
classified as equal. Although this might be due to the overall low number of equal
predictions.

e c ci d
e| 7 28 31 175
c| 0 19 4 234
ci| O 2 40 199

d |55 250 232 4508

Table 6.8: S-Match Confusion Matrix.

6.2.2 SCHEMA

SCHEMA results are comparable to the ones of S-Match that we described in the
previous Subsection. The algorithm assigns more positive labels overall, but the
precision, recall, and F1-scores are similar. Again, the accuracy would be high for
the overall predictions. The confusion matrix for SCHEMA is shown in Table 6.9.

e c ci d

33 56 25 127

11 41 32 173
ci| 8 52 28 153
d | 158 484 307 4096

Table 6.9: SCHEMA Confusion Matrix.

6.3 Supervised Taxonomy Matching Methods

6.3.1 Ontology Matching with Word Embeddings

Using word2vec together with Cosine similarity results in a comparatively high
recall across all labels. No method we evaluated so far has shown good F1-scores
across all three labels. For the equal label, the embedding model also has a com-
paratively good precision leading to the second-best F1-score after the N-Gram-
similarity. The confusion matrix for word embeddings with Cosine similarity is
shown in Table 6.10.
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e c ci d

e| 153 26 44 18

40 74 83 60

ci| 61 18 100 62
d| 368 928 916 2833

Table 6.10: Embedding CS Confusion Matrix.

6.3.2 AdaBoost

The AdaBoost model based on BoW vectors performs best for the contained-in la-
bel according to the F1-score. It also shows good results for equal- and contained-

in recall, but a high number of contains pairs are misclassified. See Table 6.11 for
the confusion matrix.

e c ci d
e| 64 13 58 106
c| 36 58 54 109
ci| 58 36 74 73
d| 822 675 921 2627

Table 6.11: AdaBoost BoW Confusion Matrix.

The results for AdaBoost based on word2vec embeddings is very close to the
WordCount version, as we can see in the precision, recall, and F1-score, but also
in the confusion matrix in Table 6.12. It seems that the embedding algorithm only
has a minor influence on this type of model.

e c ci d
e| 65 19 39 118
c| 57 45 21 134
ci| 55 20 68 98
d| 870 692 594 2889

Table 6.12: AdaBoost Embedding Confusion Matrix.
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6.3.3 Naive Bayes

The Naive Bayes model we trained on the CountVectorized class-labels achieves
consistent scores for precision, recall, and F1-score across all positive labels. In the
confusion matrix in Table 6.13 we can see that about 75 percent of disjoint pairs are
predicted correctly, putting the Naive Bayes model into the range of the WordNet-
based models with regard to this. It outperforms them on all measures except for
the precision on the equal label, where SCHEMA has a better result. While the
other models usually had two labels with similar results and one negative outlier,
i.e., one label with a worse F1-score, Naive Bayes has a positive outlier. For the
contained-in label, it achieves a slightly higher precision than for the other two.

e c ci d
e | 96 8 37 100
c| 3 53 35 136
ci| 39 23 72 107
d| 671 286 336 3752

Table 6.13: Naive Bayes Confusion Matrix.

6.3.4 Stochastic Gradient Descent

The SGD models were also trained on the BoW and the word2vec embeddings.
In contrast to the AdaBoost model, where both types of embeddings led to similar
results, the word2vec embeddings outperform the BoW embeddings on the F1-
score for all labels. For the equal and contained-in pairs, the word2vec model is
about 10 percent better than the WordCount based model. This is due to a higher
number of correctly predicted positive pairs, but there is also a slight incline of
the number of false positives. The confusion matrices for the SGD models are
presented in Tables 6.14 and 6.15.

e c ci d
e| 35 15 31 160
20 37 14 186
ci| 20 11 63 147
d| 408 446 345 3846

Table 6.14: SGD BoW Confusion Matrix.
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e c ci d
e| 8 24 35 94
c| 41 50 26 140
ci| 43 15 97 86
d| 736 621 566 3122

Table 6.15: SGD Embedding Confusion Matrix.

6.3.5 Multi-Layer Perceptron

The MLP shows good results for the equal and contained-in pairs. It also classifies
more disjoint labels correctly than any other model in our experiments. During
the experiments, we observed warnings that the model has not converged yet. The
training set may be too small for the given network. Hence, the overall performance
may improve with more training data.

e C ci d
e| 64 17 24 136
c| 24 31 13 189
ci| 18 8 78 137
d| 123 194 154 4574

Table 6.16: MLP Confusion Matrix.

6.4 Summary

In this Chapter we presented the results of different taxonomy matching approaches
on our gold standard. Simple setups like N-Gram- and Cosine-similarity on word2vec
embeddings achieved good results in predicting if two class-labels are equal to
each other. On the other hand, no model performed well in predicting if one class
contains the other, while the more complicated models, read supervised machine
learning, did a good job in predicting if one class is a subset of another. This comes
as a surprise to us, because we assumed that the model should be able to predict if
one class is more general or less general equally well. We will look at the specific
errors of each individual model in the next Chapter and discuss the results that we
have presented here.
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Error Analysis and Discussion

In this Chapter, we will analyse the experimental results we presented in the pre-
vious Chapter. We look at specific errors the model makes, give examples, and
discuss the results. Again, we start with the baseline models, continue with the
WordNet-based algorithms, and conclude with the supervised methods.

For each algorithm, we will first name the different types of errors and provide
a hypothesis on the root-cause of those. Then, we will give example predictions
that support our hypothesis or allow us to reject it. Finally, we name scenarios in
which the algorithm may prove useful.

7.1 Baseline Methods

7.1.1 Levenshtein- or Edit-Similarity

We saw that the Levenshtein-similarity is good at predicting equality for pairs that
are actually equal, but also assigned an equal label to many disjoint pairs. Our
first assumption, therefore, is that two classes which are disjoint, but have a very
similar path, e.g., due to common categories in their class-label. We would also
like to remind the reader that we generated negative corner-cases with a layout that
provokes errors like this. See the description in Section 4.3 for all details. Further,
we assume that the false positives for contains and contained-in stem from the
same problem. A third hypothesis is that minor changes in the category order or
wording may make a major difference during the prediction. Now, we will look at
each of the three hypotheses in turn and give examples.

The first one is the effect of our generated edge-cases on the disjoint labels that
were labelled as equal. Two examples of predictions that support this hypothesis
are given in Table 7.1. Actually, we were not able to find an example of a generated
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Class-Label

left TV & Home Theater > TV & Home Theater Accessories > TV Anten-
nas

right TV & Home Theater > TV & Home Theater Accessories > Remote
Controls

left  Clothing, Shoes & Jewelry > Boys > Clothing > Shorts

right Clothing, Shoes & Jewelry > Boys > Clothing > Jeans

Table 7.1: Levenshtein: Examples for False Positive Equal Predictions on Corner-
Cases.

corner-case that was labelled correctly as disjoint.

Instead, the disjoint labels that were detected by the Levenshtein-similarity are
rather obvious. We give a representative example in Table 7.2. The pair consists of
a clothing product and something in the electronics domain.

Class-Label
left  Clothing, Shoes & Jewelry > Men > Clothing > Swim > Briefs
right Cell Phones > Cellphone Accessories > Bluetooth Headsets

Table 7.2: Levenshtein: Correctly Classified Disjoint Pair.

Our second assumption is that the corner-case issue extends to the two other
positive labels. Examples are given in Table 7.3. In the left class-label of the

Class-Label

left  Electronics > Home Audio > Speakers > Center-Channel Speakers

right Electronics > Home Audio > Speakers > Subwoofers

left  Electronics > Portable Audio > Portable Audio

right Electronics > Portable Audio > Radios

left  Clothing, Shoes & Jewelry > Men > Clothing > Fashion Hoodies &
Sweatshirts

right Clothing, Shoes & Jewelry > Men > Clothing > Jackets & Coats

Table 7.3: Levenshtein: Examples for False Positive Contains and Contained-In
Predictions on Corner-Cases.

second example, we see another problem with taxonomies crawled from the Se-
mantic Web. Sometimes they contain duplicates in the hierarchy string. Zhang
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and Paramita [38] tried to find a good cleaning and normalization algorithm to
reduce this type of duplication, but found that this is counterproductive to the ac-
tual matching, because it also removes subtle differences that are important for the
classification.

Next, we will take a look at the misclassifications among the positive labels.
Examples are shown in Table 7.3. The first example illustrates how the addition of

Class-Label

left ~ Cameras & Camcorders > Digital Cameras > Mirrorless Cameras

right Electronics > Cameras & Camcorders > Mirrorless Cameras

left ~ Home > Apparel & Accessories > Watches > Watches > Tissot

right Jewelry > Watches > Luxury Watches > Tissot Watches

left  Clothing, Shoes & Jewelry > Women > Clothing > Coats, Jackets &
Vests

right Clothing > Womens Clothing > Womens Coats & Jackets

left  Sports & Outdoors > Sports & Fitness > Golf

right Sports & Outdoors > Sports > Golf Equipment > Golf Shirts

Table 7.4: Levenshtein: Examples for Misclassifications among Positive Labels.

an intermediate level may change the interpretation completely. The actual label
should be equal, but Levenshtein predicted that the left class-label is contained-in
the right class-label. In the third example, ”Vests” where added as a composite
category. Therefore, the actual label should be contained-in, but due to the high
similarity that those two labels still have, Levenshtein predicts this pair to be equal.
The problems with composite categories were identified by Aanen et al. [2] during
the development of the SCHEMA algorithm.

Overall the Levenshtein-similarity tends to predict a positive label if there is a
slight resemblance between the two class-labels. On the other hand, it has problems
with composite categories, where the order does not change the semantic meaning,
but the layout of the string. The Levenshtein-similarity is not useful as a standalone
taxonomy matcher, and due to the large number of false positives, it also does not
ease the task of a human annotator significantly.

7.1.2 N-Gram-Similarity

Our second baseline method is the N-Gram-similarity, which achieved the best
F1-score for the equal label and a comparatively high score for contains. In the
prediction of the contained-in class-label pairs, it is among the worst performers.
In this Section, we will cover plausible explanations for those results.
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The high precision on the equal pairs combined with a good recall indicates
that the N-Gram-similarity is good at detecting equal labels without misclassifying
other pairs as equal. One issue that we have detected for the Levenshtein-similarity
is the ordering of categories in the hierarchy and especially in composite categories.
”Clothing & Jewelry” and "Jewelry & Clothing” are very different according to the
Levenshtein-similarity, but due to the set-based nature, the N-Gram-similarity does
not care about the order. It would only detect minor differences around the start,
the end, and around the ampersand. Hence, our first assumption is that the N-
Gram-similarity handles composite categories better than Levenshtein-similarity.
This would explain the good recall.

A reason for the high precision on the equal class-label pairs, i.e., the low
number of false positives, may be explained by the high number of false positives
for the other two positive labels. Again, they may stem from the generated corner-
cases and, if we check for containment there, we get a complete intersection of the
sets of N-Grams and normalize afterwards. Those cases use a weak spot in our
implementation of the string-based similarity measures, because we assume that
one class A is more general than another class B, if A is very similar to B without
B’s last category. Therefore, the second assumption is that generated corner-cases
are labelled as either contains or contained-in, actual disjoint class-label pairs are
labelled as such, and only a small number of actual disjoints receive an equal label.
This hypothesis also covers the large number of false positives that we observe for
the contained-in label.

To support the first hypothesis, we will look at classes with composite cate-
gories that were misclassified by the Levenshtein-similarity and check what the
N-Gram-similarity predicted. Of the four examples presented in Table 7.4 the first
three are predicted correctly, and only the last one receives a wrong label by the N-
Gram-similarity. Instead of correctly labelling this pair as contains, both methods
predict equality.

Next, we focus on the large number of disjoint class-label pairs that received a
contained-in label. Examples are given in Table 7.5. We could present hundreds of
examples that follow this scheme. Given our implementation, we can also explain
the affinity for the contained-in label over the contains label. We compute a sim-
ilarity score for each positive label and use the maximum value for the prediction
if it exceeds a given threshold. If there is a draw, equal is picked over contained-in
and contained-in over contains. Hence, almost all artificial corner-cases are la-
belled as contained-in, because the N-Gram-similarity is equal for contains and
contained-in and higher as the prediction for equal. We could add a condition to
return disjoint if this case occurs.

With this additional condition, we achieve the following results. The new con-
fusion matrix is given in Table 7.6 and the precision, recall, and F1-scores are given
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Class-Label
left  Home > Apparel & Accessories > Watches > Watches > Pulsar
right Home > Apparel & Accessories > Watches > Watches > Anne Klein
left  Sports & Outdoors > Sports > Golf Equipment > Golf Clothing
right Sports & Outdoors > Sports > Golf Equipment > Golf Shirts
left  Electronics > Home Audio > Speakers > Surround Sound Systems
right Electronics > Home Audio > Speakers > Floorstanding Speakers

Table 7.5: N-Gram: Examples for Disjoint Pairs Labelled as Contained-in.

in Table 7.7 for each label.

e c ci d
e| 101 71 43 26
32 92 65 68
ci| 30 8 74 48
d| 28 257 113 4647

Table 7.6: N-Gram Experiment Confusion Matrix.

Label ‘ Precision Recall Fl-score
equal 0.361 0.261 0.293
contains 0.113 0.148 0.119

contained-in 0.224 0.186 0.18

Table 7.7: N-Gram Experiment Precision, Recall, and F1-score.

We also ran this setup for the Levenshtein-similarity and the Path-similarity
models, but it did not affect the F1-scores for them. We also decided to not use this
optimization for the results presented in Chapter 6, because it came as a result of
our evaluation. Since this is a special optimization for one single method, it would
make the results less comparable than using the generic implementation.

Overall we see that the N-Gram-similarity produces competitive results, espe-
cially in predicting equality. Integrating the optimization, we found as part of this
Section also improves the result for contained-in significantly. We think that the
N-Gram-similarity already provides a tough baseline that we can use to evaluate
further algorithms and could also assist a human annotator in the task of taxonomy
matching.
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7.1.3 Path Similarity

The path similarity methods diverge from their base similarity functions in the
factor that they compare individual categories instead of the full class-label. This
enables them to weight the hierarchy levels differently. During the training, we
saw that the hyperparameter learned values for lambda, the weight of the lower
category vs. the rest, between 0.2 and 0.5, and most of the time settled for 0.3. We
did not observe any differences between the Levenshtein and the N-Gram variant.
The parameter choice says that the similarity of the categories at the lower level
makes up 30 percent of the total similarity, the category pair on the second-lowest
level 21 percent, and so on. This factor already indicates that a high similarity of
the bottom-categories does not directly translate to overall equality of the class-
label pair.

The high weight on the remaining categories should also explain why the ar-
tificial edge-cases show up as false positives again. For both, Levenshtein- and
N-Gram-Path-similarity, the corner cases make up most of the false positives.

The second thing we notice is that the N-Gram-Path-similarity can not repro-
duce the good results we recorded for the N-Gram-similarity, especially the variant
we presented in this Chapter. We assume that the advantages of the set-based ap-
proach that is inherent to the N-Gram-similarity are lost when it is only applied to
a single category pair.

To support this hypothesis, we will revisit the first example in Table 7.4. The
path-distance version compares “Mirrorless Cameras” with itself, then compare
“Digital Cameras” to "Cameras & Camcorders”, and, finally, “Electronics” to
”Cameras & Camcorders”. On the other hand, the standard N-Gram-similarity
would also detect the high overlap between the ”Cameras & Camcorders” cate-
gories, because it operates globally.

Overall the path-similarity measure slightly improves the F1-score for contains
and contained-in for the Levenshtein based model. With regards to the N-Gram-
similarity, we do not see an advantage in using the path similarity approach. On
the contrary, it actually reduces the effectiveness compared to the globally applied
N-Gram-similarity.

Out of the baseline methods presented above, only the N-Gram-similarity did
surprise us positively. Its set-based approach avoids fallacies inherent to the hier-
archical nature of the class-labels under consideration. The Levenshtein- and Path-
similarity models have a focus that is to narrow to effectively predict the class-label
pairs.
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7.2 WordNet-Based Matching Methods

7.2.1 S-Match

S-Match is one of two models we investigated that use WordNet to find word senses
and detect synonyms to improve the taxonomy matching logic. Its performance is
among the worst of all models we tested, especially for the equal class-label pairs.
There are only seven true positives. Since we observe similar low scores for the
predictions on our dataset with SCHEMA, the second WordNet-based method, an
obvious hypothesis is that WordNet does not cover most words in our corpus. This
would explain why they struggle with the given dataset. For S-Match, we use two
ways to check this hypothesis. First, we look at the small number of true positives
and look for a pattern and, second, we tokenize our corpus and check how many of
the distinct words in there yield a result in the WordNet dictionary.

The first thing we observe for the class-label pairs that are equal and are pre-
dicted as such is that they are in the clothing domain and use simple, common
words. Examples are given in Table 7.8 (first part). This is similar for contains
and contained-in, which are shown in the second and third part of Table 7.8, re-
spectively. Surprisingly the last example from Table 7.4 which was misclassified
by the Levensthein- and N-Gram-similarity received the correct label by S-Match.
The examples we have looked at confirm that S-Match likely handles simple class
labels with good coverage in WordNet best.

Next, we checked the WordNet coverage of the gold standard we have used.
We split all class-labels into their individual categories and then split words and
composite categories. This results in a set of individual words per class-label. We
union all of those sets and retain only words with a length greater than two to reduce
noise. This results in a set of 1513 different words that make up our complete gold
standard. For each of those, we perform a check if at least one synset, i.e., a set
of synonyms, is returned by WordNet. Out of the 1513 words, 1261 are contained
in WordNet. Hence, about 83 percent of our corpus yields a result. We did also
perform this check using the total word count (including repetitions) instead of sets
and yield a similar result. Due to the good coverage of WordNet, we have to reject
the second hypothesis. The underwhelming results are not caused by a lack of
matches in the external corpus.

In summary, we would not recommend the usage of S-Match for taxonomy
matching. As Giunchiglia et al. [14] state in their conclusion, matching errors at
higher levels, propagate down. The depth of the class-labels in our gold standard
may increase the errors S-Match makes. To put that into perspective, we compared
our class-labels with the GPC. It uses a maximum of three layers, while most of
the class-labels in our gold standard have four or more layers, as we can see in
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Class-Label

left  Clothing & Accessories > Men > Jeans

right Clothing > Mens Clothing > Mens Jeans > Mens Jeans

left  Clothing, Shoes & Jewelry > Women > Clothing > Dresses

right Clothing, Shoes & Accessories > Women > Women’s Clothing >
Dresses

left  Sports & Outdoors > Sports & Fitness > Golf

right Sports & Outdoors > Sports > Golf Equipment > Golf Shirts

left ~ Audio > Home Audio > Speakers > In-Wall & In-Ceiling Speakers

right Electronics > Home Audio & Theater > Home Audio > All Home
Speakers > In-Wall and In-Ceiling Speakers > In-Ceiling Speakers

left  Electronics > Camera & Photo > Digital Cameras > DSLR Cameras

right Cameras & Photo > Digital Cameras

left  Baby > Feeding > Bibs & Burp Cloths > Bibs

right Baby > Feeding > Bib & Burp Cloth Sets

Table 7.8: S-Match: Examples for True Positive Class-Label Pairs.

Figure 4.2.

7.2.2 SCHEMA

The results for SCHEMA are similar to the results of S-Match with a slight ad-
vantage for SCHEMA with regard to the recall. In contrast to S-Match, which
was used as intended with code provided by the authors, we used a subset of the
SCHEMA algorithm to make it applicable to the problem at hand. The parts we
use should identify possible matches and should be followed by another ranking
algorithm to select the best match among them. Hence, we would expect false
positives, but almost no false negatives.

Since we have ruled out the influence of a low WordNet coverage in the previ-
ous Section, we will focus on the reason for the small number of positive predic-
tions in combination with the fact that about 50 percent of the positive class-label
pairs are labelled as disjoint.

For the correctly classified equal class-labels, we observe that there are only
two examples where the lowest categories of the class-label pair do not match
perfectly. Those are given in Table 7.9.

Those do not seem to be challenging and are also labelled correctly by all of
our baseline methods. The equal class-label pairs that are predicted as disjoint look
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Class-Label

left  Cell Phones & Accessories > Accessories > Virtual Reality Headsets

right Consumer Electronics > Virtual Reality > Smartphone VR Headsets

left  Electronics > Car & Vehicle Electronics > Vehicle Electronics Acces-
sories > Radar Detectors

right Consumer Electronics > Vehicle Electronics & GPS > Radar & Laser

Detectors

Table 7.9: SCHEMA: Examples for True Positive Class-Label Pairs.

in fact very similar, as we can see in Table 7.10.

Class-Label

left  Electronics > Camera & Photo > Digital Cameras > Mirrorless Cam-
eras

right Cameras & Camcorders > Digital Cameras > Mirrorless Cameras

left  Clothing, Shoes & Jewelry > Women > Clothing > Dresses

right Clothing, Shoes & Accessories > Women > Women’s Clothing >

Dresses

Table 7.10: SCHEMA: Examples for False Negative Class-Label Pairs.

The problem is that the algorithm expects that the full extended split term set of
the left category is a subset of the right one. This rarely happens. If we loosen up
this restriction and require only a partial match between the left and the right cate-
gory, we arrive at the improved results for SCHEMA that we present in Table 7.11
and Table 7.12.

e c ci d
204 5 12 20
147 25 16 69

ci| 119 14 7 101
d| 1243 80 75 3647

Table 7.11: SCHEMA Experiment Confusion Matrix.

With a more optimistic matcher, the F1-score on the equal label improves sig-
nificantly and achieves the best recall for all models. Unfortunately, this reduces
the capability of detecting containment even further.
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Label ‘ Precision Recall Fl-score
equal 0.075 0.507 0.128
contains 0.077 0.036 0.047

contained-in 0.033 0.018 0.023

Table 7.12: SCHEMA Experiment Precision, Recall, and F1-score.

In conclusion, we can say that SCHEMA does not handle the semantic taxon-
omy matching task well. With a slight modification, it may become useful as an
input for another classifier, since it is good at predicting if a pair is related at all,
without specifying the exact label.

7.3 Supervised Taxonomy Matching Methods

7.3.1 Ontology Matching with Word Embeddings

The embedding model encodes each class-label with word2vec and uses Cosine
similarity to compare the resulting vectors. For such a simple method, it provides
surprisingly accurate predictions and also has a low number of false negatives. The
large number of false positives is again due to the artificial corner-cases that are
mostly classified as either contains or contained-in.

Our interpretation is that the vectorization produces a similar global view as the
set-based N-Gram-similarity algorithm and the mapping into a vector space detects
semantic similarity if distinct vocabularies are used, e.g., when comparing “Kids”
and ”Children”.

Overall the embedding approach has one of the lowest numbers of false nega-
tives and could be useful as a first filter to exclude the majority of negative class-
label pairs.

7.3.2 AdaBoost

Both types of the AdaBoost classifier, the one using the CountVectorizer and the
other using word2vec embeddings, achieve comparable results as presented in the
previous Chapter. The classifier is based on a combination of decision trees and
aggregates the results of the individual models to make a prediction.

We would have expected that the same model, on the same data, with similar
results would imply that both variants make similar predictions, but surprisingly
they diverge quite heavily. Only 2463 out of 5784 predictions of both models are
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the same. Out of those 2463 overlapping predictions, 2185 are for disjoint class-
label pairs. Even though the models seem very similar, they seldom agree in their
prediction.

One drawback of machine learning methods is that we lack the ability to intu-
itively explain their predictions. Everything between the input class-label pair and
the output label is a black box.

We will present some examples for true- and false positives for both variants
and try to explain the influence of the embedding method on the prediction. Ta-
ble 7.13 includes true positives for equal class-labels pairs. The first part of the
table uses the BoW model and the second part the word2vec embeddings. In Ta-
ble 7.14 we present false negatives for equal class-label pairs and follow the same
layout.

Class-Label

left ~ Computers & Tablets > Monitors > All Monitors

right Computers/Tablets & Networking > Monitors, Projectors & Accs >
Monitors

left  Clothing, Shoes & Jewelry > Girls > Watches

right Jewelry > Watches > Kids Watches > Girls Watches

left  Electronics > Car & Vehicle Electronics > Car Electronics > Car Audio
> Speakers

right Consumer Electronics > Vehicle Electronics & GPS > Car Audio > Car
Speakers & Speaker Systems

left  Electronics > Car & Vehicle Electronics > Vehicle Electronics Acces-
sories > Radar Detectors

right Consumer Electronics > Vehicle Electronics & GPS > Radar & Laser
Detectors

left  Electronics > Camera & Photo > Digital Cameras > Mirrorless Cam-
eras

right Cameras & Camcorders > Digital Cameras > Mirrorless Cameras

Table 7.13: AdaBoost: Examples for True Positive Class-Label Pairs.

The third example in Table 7.13 is predicted correctly by both variants, but all
other examples did receive contradicting labels by AdaBoost. Given the examples
presented here and additional examples from our experiments, we could not find
any explanation on the different true positive predictions. The same holds true for
the examples in Table 7.14. Except for the second example from the top, both
variants disagree on the predicted label. Also, we could not find a reasonable
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Class-Label
left  Car Electronics & GPS > Car Audio > Car Speakers
right Auto & Tires > Auto Electronics > Car Speakers > Car Speakers
left ~ Home > Apparel & Accessories > Watches > Watches > Tissot
right Jewelry > Watches > Luxury Watches > Tissot Watches
left  Electronics > Headphones
right Audio > Headphones > All Headphones

left  Clothing, Shoes & Jewelry > Girls > Watches

right Jewelry > Watches > Kids Watches > Girls Watches

left Home & Kitchen > Kitchen & Dining > Kitchen & Table Linens >
Kitchen Rugs

right Home > Decor > Rugs > Kitchen Rugs

left  Electronics > Portable Audio & Video > Portable DVD Players

right TV & Home Theater > Blu-ray & DVD Players > Portable DVD Players

Table 7.14: AdaBoost: Examples for False Negative Class-Label Pairs.

explanation why those apparently obvious matches are labelled as disjoint by the
respective algorithm.

All-in-all AdaBoost gives mediocre results that are hard to explain. It behaves
very differently depending on the encoding of the class-label pairs. We would
not recommend the usage of AdaBoost in either variant for taxonomy matching,
because it delivers predictions that are hard to interpret without compensating this
with outstanding results.

7.3.3 Naive Bayes

Naive Bayes is a simple machine learning algorithm that is frequently used as a
baseline whenever classification is the objective. Scikit-learn also recommends to
try Naive Bayes in combination with the CountVectorizer'. It also has the advan-
tage that it does not require a complex hyperparameter search, because it simply
looks at the given examples to infer a posterior distribution to make predictions on
previously unseen data.

We do not see any obvious problems in the confusion matrix and the precision,
recall, and F1-scores of Naive Bayes. There are about twice as many equal labelled
false positives than for the contains and contained-in labels, so we will take a look

'nttps://scikit-learn.org/stable/modules/generated/sklearn.
naive_bayes.MultinomialNB.html. Accessed: 01.05.2020
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at some examples for those three cases and try to derive some conclusions. In the
same manner, we will look at false negatives.
Examples of false positives are given in Table 7.15. Some errors stem from the

Class-Label

left ~ Electronics > Computers & Accessories > Tablet Accessories > Bags,
Cases & Sleeves > Cases

right Jewelry > Watches > Designer Watches > Guess Watches

left  Electronics > Computers & Accessories > Data Storage > Internal
Solid State Drives

right Electronics > TV & Video > TV Accessories > TV Antennas

left  Electronics > Home Audio > Speakers > Floorstanding Speakers

right Electronics > Home Audio > Speakers > Outdoor Speakers

Table 7.15: Naive Bayes: Examples for False Positive Class-Label Pairs.

generated corner-cases, but Naive Bayes is better than the string-based baselines
methods in labelling those correctly. The other group of errors seems completely
arbitrary. One reason for this behavior may be the independence assumption in
Naive Bayes. It states that all input variables are expected to be conditionally inde-
pendent. In our case, it may be possible that Naive Bayes only learns that a specific
word in the left or right class-label indicates equality and another word contain-
ment, and so on. Therefore, Naive Bayes never takes the relationship between the
two class-labels into account. Following this assumption, it would output a com-
bination of the likelihood that the left and the right label usually have a specific
relationship with other labels.

We observe a similar behavior for the false negatives that we present in Ta-
ble 7.16.

Class-Label
left  Sports & Outdoors > Sports & Fitness > Golf
right  Sports & Outdoors > Sports > Golf Equipment > Golf Shirts
left Home, Furniture & Office > Furniture & Decor > Clocks
right Home > Decor > Clocks

Table 7.16: Naive Bayes: Examples for False Negative Class-Label Pairs.

In addition to the drawback mentioned above, it is impossible to reuse the ex-
isting model in another domain, e.g., Food, with the closed vocabulary that we use
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for training. Transferring it would require an additional set of labelled training data
in the new domain.

Overall we see good results for Naive Bayes on the given training set, but we
identified two possible limitations for any real-world usage. The closed vocabu-
lary prohibits an application in a new domain without additional training data, and
the independence assumption indicates that the likelihood is based on individual
keywords instead of the relation between the two class-labels.

7.3.4 Stochastic Gradient Descent

The SGDClassifier uses an SVM model and trains it with SGD. In contrast to the
AdaBoost models, the word2vec embedding enables substantially better predic-
tions compared to the results based on the CountVectorizer. According to the doc-
umentation of the SGDClassifier, it supports sparse (CountVectorizer) and dense
(word2vec) vectors as inputs. Hence, both types of encodings are supported equally
well. The other differentiating factor between the two encodings is the vector di-
mension. While the word2vec model uses 300 dimensions, the CountVectorizer
produces a sparse vector with the vocabulary size, i.e., more than 2000 dimensions.

Since SVM classifiers try to find an optimal hyperplane to separate the train-
ing examples, the algorithm may perform worse on higher dimensional vectors,
since it becomes harder to find a suitable decision boundary. We may improve the
CountVectorizer results with additional training examples, but we expect that the
benefit will be small.

The word2vec approach has the additional advantage of a broader vocabulary.
We could use the given model to make predictions in any domain that is covered
by the Googe-News dataset that was used to train the word2vec model. Hence, we
will focus on the word2vec based predictions in the remainder of this Subsection.

Since we also observe a high number of false positives for the word2vec based
model, we would assume that this is due to the artificial corner cases. Contrary
to our expectation, the majority of false positives are obviously disjoint, e.g., with
one class-label being in the “Electronics” and the other being in the ”Clothing”
domain.

Following up on our conclusions from the Levenshtein- and N-Gram-similarity,
which had problems with artificial edge-cases, we would like to try a two-phased
approach for taxonomy matching. A string-based method with a low threshold
could be used to filter the obviously disjoint pairs. Since the SGD model performs
well on actual positive labels and artificial edge-cases, we would expect better
results than with one of the standalone models.

To verify this hypothesis, we replaced all SGD predictions with disjoint if the
Levenshtein-similarity did not exceed 0.3. We also tested 0.2 and 0.4 as thresholds
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and found that 0.3 gave the best average F1-score. The prediction, recall, and F1-
score are given in Table 7.17 and the confusion matrix in Table 7.18.

Label Precision Recall Fl-score
equal 0.081 0.208 0.112
contains 0.051 0.094 0.061

contained-in 0.126 0.212 0.156

Table 7.17: SGD Experiment Precision, Recall, and F1-score.

e c ci d
e| 83 23 35 100
c| 35 38 20 164
ci| 39 10 76 116
d| 437 379 278 3951

Table 7.18: SGD Experiment Confusion Matrix.

While the number of false positives decreases significantly, we also lose some
true positives. Adding this restriction, therefore, increases overall prediction accu-
racy, but results in a slight decline of recall.

The word2vec based SGD model successfully predicts most of our artificial
edge cases correctly and outperforms the AdaBoost model. It could be used on its
own or be combined with the Levenshtein-similarity to trade-off recall for addi-
tional accuracy.

7.3.5 Multi-Layer Perceptron

As we have stated in the previous Chapter, the Neural Network had convergence
issues, which are probably due to an insufficient amount of training data. We also
tried smaller networks, but the issue persisted. In addition, we trained the model on
the full, noisy dataset that we extracted from the Semantic Web and labelled based
on shared instances, but this did not improve the results. We also saw that the
instance-based approach produced multiple misclassifications among the positive
labels, especially for class-label that contain many products on one e-commerce
platform, but less on another. Hence, the only way to improve this model is to
provide more manually annotated data.

On the other hand, we would be curious about how the given model would per-
form in a new domain, e.g., Food, without training it on examples in this domain.
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Unfortunately, we lack a dataset for evaluating those. Using either the Clothing
or the Electronics data in our corpus for training the model and testing it on the
other data would not give reliable results for this experiment, because the amount
of training data would be far too small.

Overall the neural network makes good predictions given the training data, but
we would like to explore in the future how it performs in a new domain and if
additional data would lead to significant improvements of the predictions.

7.4 Summary

In this Chapter we analyzed the errors that the tested models make and gave ex-
amples for cases that could be considered easy and for cases where the models
struggle to make the correct prediction. At the end of each Subsection, we gave a
recommendation for suitable use cases of the given model.

Overall the N-Gram-similarity and the word2vec embeddings with Cosine sim-
ilarity have a good recall, and a comparatively good F1-score. They would cer-
tainly be helpful as an input for a human annotator, but are not precise enough for
a standalone application.

The Neural Network did provide a good overall accuracy, but would benefit
from additional training data. It would also be interesting to check if the embedding
models (AdaBoost, SGD, and MLP) generalize to new domains without additional
training, but we leave this for future work.

In our interpretation, we were also limited by the lack of explainable predic-
tions for machine learning models. In the current form, they can only serve as a
black box. It would aid the interpretability of the predictions if there were tools
available that explain the internal behavior of a given model.



Chapter 8

Summary and Future Work

In this Chapter, we will review the main contributions and results of this Thesis.
Afterwards, we will look at possible future extensions of the work presented here.

In Chapter 2 we gave a general introduction into the Semantic Web and the
reasons behind its creation. We showed how annotations in the HTML-code can
ensure that content that was created for humans becomes readable for machines.
We also introduced the ideas behind ontology matching and, a special case of on-
tology matching, taxonomy matching. Taxonomy matching presents itself as espe-
cially useful in an e-commerce environments to enhance catalog integration tasks
and product searches.

Relevant contributions in the field of the Semantic Web, ontology matching,
and product taxonomy matching are presented in Chapter 3. In addition to a de-
scription of the relevant methods, we designed a categorization system for product
taxonomy matching algorithms in which we integrated the methods from Chapter 3
and the ones used throughout this Thesis.

To compare different methods for product taxonomy matching, we created a
training dataset from product information that was crawled from the Semantic Web.
We found that labels derived from shared instances have an overall low quality and
are insufficient for reliable testing and, therefore, we manually annotated a subset
of this training set to create a product taxonomy matching gold standard. The result
is a set of class-label pairs from different e-commerce platforms that are labelled
as either equal, contains, contained-in, or disjoint.

We described the methods that we test on this gold standard in Chapter 5. This
includes three major types of methods. The first group consists of static methods
that only use the information given in the two class-labels that should be labelled.
The algorithms in the second group are also static in the sense that they do not ben-
efit from training data, but they include external corpora like WordNet to enhance

67
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their results. The last group consists of machine learning models that are trained on
our training set and use the two class-labels as an input to make their predictions.

Chapter 6 dealt with the results of our experiments. For each method, we pro-
vided the precision, recall, and F1-score per positive label and the corresponding
confusion matrix.

In Chapter 7 we analysed those results and tried to identify explanations for
the phenomena we observed in the experiments. In doing so, we presented in-
dividual examples for class-label pairs that are either hard or easy to predict for
a given algorithm and provide recommendations for cases where a certain algo-
rithm may prove useful. Overall, we noticed that product taxonomy matching is
a tough problem and no method provides fully satisfying results. Especially the
added complexity of more advanced models is often not justified by a significant
improvement over the baseline methods.

The implementations we have used in order to replicate the results of relevant
contributions on a real-world dataset follow the description of the authors as close
as possible and we used open source packages where available. Nevertheless, we
had to add small adjustments to cater to our requirement of providing semantic
annotations, i.e., detection of equality or if one class is more general than another.
Only our machine learning models and S-Match [14] provide this functionality out
of the box. However, those adjustments do not explain the overall bad performance
of the models under consideration.

Thus, as a part of this Thesis, we have identified two fields that deserve addi-
tional attention.

First, all models across the literature require that the two taxonomies under
consideration use similar concepts to label their products. We agree that this is a
necessary requirement to detect equality or another semantic relationship, but we
also found classes that share a set of products, but use orthogonal classification
methods. An example may be a classification either by sport (Sports > Golf >
Polo Shirts) or by brand (Sports > Under Armour > Polo Shirts). The two class-
labels would certainly share some products, but do not fit any of the conventional
semantic labels. Those partial overlaps can not be handled by any model that we
are aware of. We detected those in our dataset based on shared instances, but it
would be interesting to classify them based on the class-label alone.

The second area is the semantic labelling of class-label pairs that we also cov-
ered in this Thesis. Most existing methods focus on finding the best match for a
given class-label in a target taxonomy. While this certainly has a use case for cata-
log integration, the more generic solution could also enhance product search tasks
and possibly more topics.

In conclusion, we have seen that product taxonomy matching is a relevant prob-
lem with room for improvement. On the one hand, we provided insights into the
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specific problem one faces with product taxonomies and, on the other hand, assist
further research with the gold standard we created.
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